最新发布!阿里巴巴内部实战AlibabaSentinel高并发流量治理手册

简介: 为什么要使用Sentinel?Sentinel使用简单、配置灵活,可将Sentinel的动态数据源接口与配置中心结合使用,动态地改变流量规则。Sentinel提供的流量控制功能有限流、熔断、系统自适应、授权等。笔者当时使用了熔断和系统自适应功能应对突增流量导致服务雪崩的问题,同时使用限流功能并结合信号量隔离、匀速限流效果控制器,应对内部定时任务瞬时高并发调用某服务接口的问题。

为什么要使用Sentinel?

Sentinel使用简单、配置灵活,可将Sentinel的动态数据源接口与配置中心结合使用,动态地改变流量规则。Sentinel提供的流量控制功能有限流、熔断、系统自适应、授权等。笔者当时使用了熔断和系统自适应功能应对突增流量导致服务雪崩的问题,同时使用限流功能并结合信号量隔离、匀速限流效果控制器,应对内部定时任务瞬时高并发调用某服务接口的问题。


本书内容路线:


内容展示:

第1章基础知识



第2章了解概念与核心类



需要获取这份手册的小伙伴可以点击此处即可!

第3章了解整体工作流程



第4章资源指标数据统计



第5章限流



第6章熔断降级



第7章授权与系统自适应



第8章实现开关降级



第9章动态数据源



第10章适配主流框架


第11章热点参数限流


第12章集群限流



第13章异步调用链的支持


第14章Sentinel Dashboard


需要获取这份手册的小伙伴点击此处即可免费获取!


相关文章
|
6月前
|
缓存 监控 Cloud Native
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
本文深入解析了Java Solon v3.2.0框架的实战应用,聚焦高并发与低内存消耗场景。通过响应式编程、云原生支持、内存优化等特性,结合API网关、数据库操作及分布式缓存实例,展示其在秒杀系统中的性能优势。文章还提供了Docker部署、监控方案及实际效果数据,助力开发者构建高效稳定的应用系统。代码示例详尽,适合希望提升系统性能的Java开发者参考。
290 4
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
|
6月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
1598 7
|
5月前
|
数据采集 监控 网络协议
基于aiohttp的高并发爬虫实战:从原理到代码的完整指南
在数据驱动时代,传统同步爬虫效率低下,而基于Python的aiohttp库可构建高并发异步爬虫。本文通过实战案例解析aiohttp的核心组件与优化策略,包括信号量控制、连接池复用、异常处理等,并探讨代理集成、分布式架构及反爬应对方案,助你打造高性能、稳定可靠的网络爬虫系统。
324 0
|
8月前
|
SQL 安全 测试技术
2025接口测试全攻略:高并发、安全防护与六大工具实战指南
本文探讨高并发稳定性验证、安全防护实战及六大工具(Postman、RunnerGo、Apipost、JMeter、SoapUI、Fiddler)选型指南,助力构建未来接口测试体系。接口测试旨在验证数据传输、参数合法性、错误处理能力及性能安全性,其重要性体现在早期发现问题、保障系统稳定和支撑持续集成。常用方法包括功能、性能、安全性及兼容性测试,典型场景涵盖前后端分离开发、第三方服务集成与数据一致性检查。选择合适的工具需综合考虑需求与团队协作等因素。
1102 24
|
缓存 NoSQL Java
Java高并发实战:利用线程池和Redis实现高效数据入库
Java高并发实战:利用线程池和Redis实现高效数据入库
975 0
|
12月前
|
缓存 NoSQL Java
高并发场景秒杀抢购超卖Bug实战重现
在电商平台的秒杀活动中,高并发场景下的抢购超卖Bug是一个常见且棘手的问题。一旦处理不当,不仅会引发用户投诉,还会对商家的信誉和利益造成严重损害。本文将详细介绍秒杀抢购超卖Bug的背景历史、业务场景、底层原理以及Java代码实现,旨在帮助开发者更好地理解和解决这一问题。
371 12
|
消息中间件 存储 负载均衡
高并发流量杀手锏:揭秘秒杀系统背后的削峰技术!
本文介绍了秒杀场景下的“削峰填谷”策略,通过消息队列缓冲用户请求,避免高并发对系统造成冲击。文中详细解释了消息队列的工作原理及如何通过预扣减库存和分布式锁确保数据一致性,同时还提出了合理的消息队列配置、高可用性及数据库负载均衡等最佳实践。通过这些技术手段,可有效提升系统的稳定性和用户体验。
732 8
高并发流量杀手锏:揭秘秒杀系统背后的削峰技术!
|
存储 监控 Java
近亿级用户体量高并发实战:大促前压测干崩近百个服务引起的深度反思!
几年前,数百个服务,将堆内存从28GB升配到36GB,引发系统全面OOM的事件。
411 12
|
存储 缓存 运维
优化高并发环境下的数据库查询性能:实战经验与技巧
在高并发环境下,数据库性能往往成为系统瓶颈。本文将深入探讨在高并发场景下优化数据库查询性能的策略与实践,包括索引优化、查询优化、数据库架构设计以及缓存机制的应用。通过对具体案例的分析,读者将能够掌握提升数据库性能的关键技术,从而在面对大规模用户请求时提高系统的响应速度和稳定性。
|
存储 监控 固态存储
【性能突破】揭秘!如何让您的数据库在高并发风暴中稳如磐石——一场关于WAL写入性能优化的实战之旅,不容错过的技术盛宴!
【8月更文挑战第21天】在高并发环境下,数据库面临极大挑战,特别是采用Write-Ahead Logging (WAL)的日志机制。本文通过一个在线交易系统的案例,分析了WAL写入性能瓶颈,并提出优化方案:理解WAL流程;分析磁盘I/O瓶颈、缓冲区设置与同步策略;通过增大WAL缓冲区、使用SSD及调整同步策略来优化;最后通过测试验证改进效果,总结出一套综合优化方法。
321 0

热门文章

最新文章