Java线程并发协作与任务定时调度

简介: Java线程并发协作与任务定时调度

  多线程环境下,我们经常需要多个线程的并发和协作。这个时候,就需要了解一个重要的多线程并发协作模型“生产者/消费者模式”。

什么是生产者?

     生产者指的是负责生产数据的模块(这里模块可能是:方法、对象、线程、进程)。

什么是消费者?

     消费者指的是负责处理数据的模块(这里模块可能是:方法、对象、线程、进程)。

什么是缓冲区?

 消费者不能直接使用生产者的数据,它们之间有个“缓冲区”。生产者将生产好的数据放入“缓冲区”,消费者从“缓冲区”拿要处理的数据。

图11-17 生产者消费者示意图

     缓冲区是实现并发的核心,缓冲区的设置有3个好处:

实现线程的并发协作

有了缓冲区以后,生产者线程只需要往缓冲区里面放置数据,而不需要管消费者消费的情况;同样,消费者只需要从缓冲区拿数据处理即可,也不需要管生产者生产的情况。 这样,就从逻辑上实现了“生产者线程”和“消费者线程”的分离。

解耦了生产者和消费者

  生产者不需要和消费者直接打交道。

解决忙闲不均,提高效率

 生产者生产数据慢时,缓冲区仍有数据,不影响消费者消费;消费者处理数据慢时,生产者仍然可以继续往缓冲区里面放置数据 。

生产者与消费者模式:

public class TestProduce {
    public static void main(String[] args) {
        SyncStack sStack = new SyncStack();// 定义缓冲区对象;
        Shengchan sc = new Shengchan(sStack);// 定义生产线程;
        Xiaofei xf = new Xiaofei(sStack);// 定义消费线程;
        sc.start();
        xf.start();
    }
}
class Mantou {// 馒头
    int id;
    Mantou(int id) {
        this.id = id;
    }
}
class SyncStack {// 缓冲区(相当于:馒头筐)
    int index = 0;
    Mantou[] ms = new Mantou[10];
    public synchronized void push(Mantou m) {
        while (index == ms.length) {//说明馒头筐满了
            try {
               //wait后,线程会将持有的锁释放,进入阻塞状态;
               //这样其它需要锁的线程就可以获得锁;
                this.wait();
                //这里的含义是执行此方法的线程暂停,进入阻塞状态,
                //等消费者消费了馒头后再生产。
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        // 唤醒在当前对象等待池中等待的第一个线程。
        //notifyAll叫醒所有在当前对象等待池中等待的所有线程。
        this.notify();
        // 如果不唤醒的话。以后这两个线程都会进入等待线程,没有人唤醒。
        ms[index] = m;
        index++;
    }
    public synchronized Mantou pop() {
        while (index == 0) {//如果馒头筐是空的;
            try {
                //如果馒头筐是空的,就暂停此消费线程(因为没什么可消费的嘛)。
                this.wait();                //等生产线程生产完再来消费;
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        this.notify();
        index--;
        return ms[index];
    }
}
class Shengchan extends Thread {// 生产者线程
    SyncStack ss = null;
    public Shengchan(SyncStack ss) {
        this.ss = ss;
    }
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println("生产馒头:" + i);
            Mantou m = new Mantou(i);
            ss.push(m);
        }
    }
}
class Xiaofei extends Thread {// 消费者线程;
    SyncStack ss = null;
    public Xiaofei(SyncStack ss) {
        this.ss = ss;
    }
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            Mantou m = ss.pop();
            System.out.println("消费馒头:" + i);
        }
    }
}

执行结果如图11-18所示:

线程并发协作总结:

     线程并发协作(也叫线程通信),通常用于生产者/消费者模式,情景如下:

 1. 生产者和消费者共享同一个资源,并且生产者和消费者之间相互依赖,互为条件。

     2. 对于生产者,没有生产产品之前,消费者要进入等待状态。而生产了产品之后,又需要马上通知消费者消费。

 3. 对于消费者,在消费之后,要通知生产者已经消费结束,需要继续生产新产品以供消费。

     4. 在生产者消费者问题中,仅有synchronized是不够的。

       · synchronized可阻止并发更新同一个共享资源,实现了同步;

  · synchronized不能用来实现不同线程之间的消息传递(通信)。

     5. 那线程是通过哪些方法来进行消息传递(通信)的呢?见如下总结:

   6. 以上方法均是java.lang.Object类的方法;

     都只能在同步方法或者同步代码块中使用,否则会抛出异常。

注:

  在实际开发中,尤其是“架构设计”中,会大量使用这个模式。 对于初学者了解即可,如果晋升到中高级开发人员,这就是必须掌握的内容。

任务定时调度:

   通过Timer和Timetask,我们可以实现定时启动某个线程。

java.util.Timer

  在这种实现方式中,Timer类作用是类似闹钟的功能,也就是定时或者每隔一定时间触发一次线程。其实,Timer类本身实现的就是一个线程,只是这个线程是用来实现调用其它线程的。

java.util.TimerTask

   TimerTask类是一个抽象类,该类实现了Runnable接口,所以该类具备多线程的能力。

在这种实现方式中,通过继承TimerTask使该类获得多线程的能力,将需要多线程执行的代码书写在run方法内部,然后通过Timer类启动线程的执行。

java.util.Timer的使用:

import java.util.Timer;
import java.util.TimerTask;
public class TestTimer {
    public static void main(String[] args) {
        Timer t1 = new Timer();//定义计时器;
        MyTask task1 = new MyTask();//定义任务;
        t1.schedule(task1,3000);  //3秒后执行;
        //t1.schedule(task1,5000,1000);//5秒以后每隔1秒执行一次!
        //GregorianCalendar calendar1 = new GregorianCalendar(2010,0,5,14,36,57); 
        //t1.schedule(task1,calendar1.getTime()); //指定时间定时执行; 
    }
}
class MyTask extends TimerTask {//自定义线程类继承TimerTask类;
    public void run() {
        for(int i=0;i<10;i++){
            System.out.println("任务1:"+i);
        }
    }
}

执行结果如图所示:

 运行以上程序时,可以感觉到在输出之前有明显的延迟(大概就是3秒!)。还有几个方法,我注释掉了,大家自己试试吧!


     在实际使用时,一个Timer可以启动任意多个TimerTask实现的线程,但是多个线程之间会存在阻塞。所以如果多个线程之间需要完全独立的话,最好还是一个Timer启动一个TimerTask实现。


注:


     实际开发中,我们可以使用开源框架quanz,更加方便的实现任务定时调度。实际上,quanz底层原理就是我们这里介绍的内容。

目录
相关文章
|
1月前
|
并行计算 Java 数据处理
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
183 0
|
1月前
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
29天前
|
安全
List并发线程安全问题
【10月更文挑战第21天】`List` 并发线程安全问题是多线程编程中一个非常重要的问题,需要我们认真对待和处理。只有通过不断地学习和实践,我们才能更好地掌握多线程编程的技巧和方法,提高程序的性能和稳定性。
137 59
|
8天前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
|
20天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
22天前
|
NoSQL Java 调度
Java调度任务如何保证相同任务在一个周期里只执行一次?
【10月更文挑战第29天】Java调度任务如何保证相同任务在一个周期里只执行一次?
57 6
|
22天前
|
存储 NoSQL Java
Java调度任务如何使用分布式锁保证相同任务在一个周期里只执行一次?
【10月更文挑战第29天】Java调度任务如何使用分布式锁保证相同任务在一个周期里只执行一次?
61 1
|
25天前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
46 2
|
1月前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
29 1
|
1月前
|
Java Shell Maven
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
111 4
下一篇
无影云桌面