ModelScope-Agent,助力每一位开发者搭建AI智能体

简介: ModelScope-Agent,助力每一位开发者搭建AI智能体


今天,阿里云牵头建设的AI模型社区魔搭(ModelScope)又上新了,推出适配开源大语言模型(LLM)的AI Agent开发框架ModelScope-Agent


借助ModelScope-Agent,所有开发者都可基于开源 LLM 搭建属于自己的智能体应用,最大限度释放想象力和创造力。ModelScope-Agent的代码现已开源。


AI Agent(AI智能体、AI代理)可谓当前大模型领域最热门的研究方向,它是指基于LLM的、能够使用工具自主完成特定任务的智能体。


众所周知,目前阶段的LLM存在能力边界,主要擅长处理文本任务。AI Agent将LLM与其他模型、软件等外部工具协同,便能处理真实世界中的各种复杂任务,比如接入视频生成模型,自主生产视频;接入外部软件,帮人类写邮件、订票、购物等等。


AI Agent类应用正在成为大模型创业的重要赛道,AI Agent 开发框架也应运而生。但业界现有的AI Agent 开发框架大多基于闭源 LLM 构建。为了充分释放开源 LLM 的生产力,魔搭社区自研了适配开源 LLM 的AI Agent开发框架ModelScope-Agent。简而言之,ModelScope-Agent是pilot(领航员)而非copilot(副驾驶员)。


此前,魔搭已用这套框架在社区做了“打样”,搭建 ModeScopeGPT,它能通过自然语言与用户交互、接受用户指令,通过“中枢模型”通义千问调用社区的众多AI模型API,自主完成人类布置的任务。ModeScopeGPT的调用量已超过 25 万。


(ModelScope-Agent系统架构图)


AI Agent的工作流程一般包括任务的理解、规划和执行,其中,LLM 负责任务规划、工具调用以及回复生成,是整个流程的智能中枢,好比人类的大脑。


ModelScope-Agent允许开发者自由选择智能体的“大脑”,适配百川、通义千问等各类开源模型。主流LLM能够做到“即插即用”,开发者如需专门训练LLM 以增强其工具调用能力,可以参考ModelScope-Agent开源的训练数据、训练方法、优化方案、评估方法。


ModelScope-Agent开发框架还包含记忆控制、工具使用等模块,记忆控制模块支持知识检索以及 prompt (提示词)管理,工具使用模块支持工具库、工具检索、工具定制。为了增强开源大模型工具调用能力,魔搭社区还自研了一个包含60w样本的MSAgent-Bench工具调用数据集。


大多数 AI Agent 开发框架需要手动添加工具,而ModelScope-Agent 通过调用魔搭社区上开源的文本向量模型,打造API 工具检索引擎,能让AI Agent根据用户指令自动检索相关工具。如果开发者想要新增外部工具/API,只需要在ModelScope-Agent上注册工具,即可直接调用。


开源正在成为很多头部大模型玩家的选择。未来,ModelScope-Agent 会适配更多新增的开源LLM,并将推出更多基于ModelScope-Agent开发的应用,如个人助理 Agent、Story Agent、Multi-Agent等。魔搭鼓励开发者用ModelScope-Agent探索工业制造、游戏开发、智能互联等行业的应用。


魔搭社区现已聚集20多家顶尖人工智能机构贡献的1000多个开源模型,模型下载量累计突破6000万。未来,魔搭将持续通过开源开放,推进大模型的技术发展和应用落地。阿里云希望把魔搭建设成为中国最大的大模型自由市场,持续促进中国大模型生态的繁荣。




/ END /


目录
相关文章
|
25天前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
266 115
|
25天前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
230 117
|
1月前
|
人工智能 定位技术 API
智能体(Agent):AI不再只是聊天,而是能替你干活
智能体(Agent):AI不再只是聊天,而是能替你干活
865 99
|
24天前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
2226 42
|
21天前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
321 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
1月前
|
人工智能 Cloud Native 搜索推荐
【2025云栖大会】阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
2025云栖大会阿里云AI搜索专场上,发布了年度AI搜索技术与产品升级成果,推出Agentic Search架构创新与云原生引擎技术突破,实现从“信息匹配”到“智能问题解决”的跨越,支持多模态检索、百亿向量处理,助力企业降本增效,推动搜索迈向主动服务新时代。
251 22
|
19天前
|
人工智能 开发者
从技术到品牌:一个AI指令,让开发者也能写出动人的品牌故事
开发者常擅技术却困于品牌叙事。本文分享一套结构化AI指令,结合DeepSeek、通义千问等国产工具,将品牌故事拆解为可执行模块,助力技术人快速生成有温度、有逻辑的品牌故事框架,实现从代码到共鸣的跨越。
102 5
|
28天前
|
存储 人工智能 前端开发
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
256 6
|
28天前
|
人工智能 监控 Java
Spring AI Alibaba实践|后台定时Agent
基于Spring AI Alibaba框架,可构建自主运行的AI Agent,突破传统Chat模式限制,支持定时任务、事件响应与人工协同,实现数据采集、分析到决策的自动化闭环,提升企业智能化效率。
Spring AI Alibaba实践|后台定时Agent
|
28天前
|
数据采集 人工智能 算法
拔俗AI信息化系统开发:开发者必须啃下的三块技术硬骨头
企业数字化转型中,AI系统成刚需。开发者需攻克三大难关:精准拆解模糊需求,确保业务与技术对齐;严控数据质量,构建持续迭代的数据闭环;实现模型在产线的高效、稳定落地。技术与场景深度融合,方能跨越从“能用”到“好用”的鸿沟。(238字)