使用Apache IoTDB进行IoT相关开发的架构设计与功能实现(9)

简介: GROUP BY 语句为用户提供了三种类型的指定参数: 参数1:时间轴上的显示窗口 参数2:划分时间轴的时间间隔(应为正) 参数3:时间滑动步长(可选,不应小于时间间隔,如果未设置,则默认等于时间间隔)

降频聚合查询

本节主要介绍下频聚合查询的相关示例,使用分组依据子句,用于根据用户给定的分区条件对结果集进行分区,并聚合分区的结果集。IoTDB支持根据时间间隔和自定义滑动步长对结果集进行分区,不小于时间间隔,未设置则默认等于时间间隔。默认情况下,结果按时间升序排序。还可以使用Java JDBC用于执行相关查询的标准接口。

GROUP BY 语句为用户提供了三种类型的指定参数:

  • 参数1:时间轴上的显示窗口
  • 参数2:划分时间轴的时间间隔(应为正)
  • 参数3:时间滑动步长(可选,不应小于时间间隔,如果未设置,则默认等于时间间隔)

这三类参数的实际含义如下图5.2所示。其中,参数 3 是可选的。接下来,我们将给出三个典型的降频聚合示例:未指定参数 3、指定参数 3 和指定值过滤条件。

图5.2 三类参数的实际含义

不指定滑动步长的降频聚合查询

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01T00:00:00, 2017-11-07T23:00:00),1d);

这意味着:

由于用户未指定滑动步长,因此 GROUP BY 语句将默认将滑动步长设置为与时间间隔相同的时间间隔,即 。1d

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。将此参数(1d)作为时间间隔,显示窗口的开始时间作为划分原点,将时间轴划分为几个连续区间,分别是[0,1d),[1d,2d),[2d,3d)等。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为 [2017-11-01T00:00:00, 2017-11-07 T23:00:00]范围内的数据),并将这些数据映射到之前分段的时间轴(本例中每 1 天有映射的数据)从2017-11-01T00:00:00到2017-11-07T23:00:00:00)。

由于结果范围内都有每个时间段的数据要显示,因此 SQL 语句的执行结果如下所示:

指定滑动步长的降频聚合查询

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01 00:00:00, 2017-11-07 23:00:00), 3h, 1d);

这意味着:

由于用户将滑动步长参数指定为 1d,因此 GROUP BY 语句将延长时间间隔,而不是默认。1 day3 hours

这意味着我们希望每天从 00-00-00 到 02-59-59 获取 2017:11:01 到 2017:11:07 的所有数据。

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。以此参数(3h)为时间间隔,以显示窗口的开始时间为划分原点,将时间轴划分为几个连续区间,分别是[2017-11-01T00:00:00、2017-11-01T03:00:00)、[2017-11-02T00:00:00、2017-11-02T03:00:00)、[2017-11-03T00:00:00、2017-11-03T03:00:00)等。

上面 GROUP BY 语句的第三个参数是每个时间间隔移动的滑动步长。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为 [2017-11-01T00:00:00, 2017-11-07T23:00:00]范围内的数据),并将这些数据映射到之前分段的时间轴(本例中每 3 小时有映射的数据为每天从2017-11-01T00:00:00到2017-11-07T23:00:00:00)。

由于结果范围内都有每个时间段的数据要显示,因此 SQL 语句的执行结果如下所示:

指定值的降频聚合查询 过滤条件

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 wheretime> 2017-11-01T01:00:00 and temperature > 20 group by([2017-11-01T00:00:00, 2017-11-07T23:00:00), 3h, 1d);

这意味着:

由于用户将滑动步长参数指定为 1d,因此 GROUP BY 语句将延长时间间隔,而不是默认。1 day3 hours

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。以此参数(3h)为时间间隔,以显示窗口的开始时间为划分原点,将时间轴划分为几个连续区间,分别是[2017-11-01T00:00:00、2017-11-01T03:00:00)、[2017-11-02T00:00:00、2017-11-02T03:00:00)、[2017-11-03T00:00:00、2017-11-03T03:00:00)等。

上面 GROUP BY 语句的第三个参数是每个时间间隔移动的滑动步长。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为(2017-11-01T01:00:00,2017-11-07T23:00:00]且满足root.ln.wf01.wt01.温度>20)范围内的数据, 并将这些数据映射到之前分段的时间轴(在这种情况下,从 3-2017-11T01:00:00 到 00-2017-11T07:23:00,每天每 00 小时都有映射的数据)。

左开和右闭合范围

SQL 语句为:

  1. selectcount(status) from root.ln.wf01.wt01 group by((5, 40], 5ms);

在此 sql 中,时间间隔为左打开和右关闭,因此我们不会包含时间戳 5 的值,而是包含时间戳 40 的值。

我们将得到如下结果:

时间 count(root.ln.wf01.wt01.status)
10 1
15 2
20 3
25 4
30 4
35 3
40 5

使用 Fill 子句的降频聚合查询

在按填充分组中,分组依据子句不支持滑动步骤

现在,分组按填充仅支持last_value聚合函数。

在按填充分组中不支持线性填充。

上一个和以前的区别
  • PREVIOUS 将填充任何空值,只要存在它之前的值不是空值。
  • PREVIOUSUNTILLAST 不会填充时间在该时间序列的最后一个时间之后的结果。

SQL 语句为:

  1. SELECTlast_value(temperature)FROM root.ln.wf01.wt01 GROUPBY([8, 39), 5m) FILL (int32[PREVIOUSUNTILLAST])

这意味着:

使用上一页填充方式填充源下频聚合查询结果。

GROUP BY 语句中 SELECT 后面的路径必须是聚合函数,否则系统会给出相应的错误提示,如下所示:

最后一点查询

在 IoT 设备快速更新数据的场景中,用户对 IoT 设备的最新点更感兴趣。

最后一个点查询是以三列格式返回给定时间序列的最新数据点。

SQL 语句定义为:

  1. select last <Path> [COMMA <Path>]* from < PrefixPath > [COMMA < PrefixPath >]* <DISABLE ALIGN>

这意味着:查询并返回时间序列前缀 Path.path 的最后一个数据点。

结果将以三列表格式返回。

  1. | Time | Path | Value |

示例 1:获取 root.ln.wf01.wt01.speed 的最后一点:

  1. > select lastspeedfromroot.ln.wf01.wt01
  2. | Time | Path | Value |
  3. | --- | ----------------------- | ----- |
  4. | 5 | root.ln.wf01.wt01.speed | 100 |

示例 2:获取 root.ln.wf01.wt01 的最后一个速度、状态和温度点

  1. > select lastspeed,status,temperaturefromroot.ln.wf01.wt01
  2. | Time | Path | Value |
  3. | --- | ---------------------------- | ----- |
  4. | 5 | root.ln.wf01.wt01.speed | 100 |
  5. | 7 | root.ln.wf01.wt01.status | true |
  6. | 9 | root.ln.wf01.wt01.temperature| 35.7 |

自动灌装

在IoTDB的实际使用中,在进行时间序列的查询操作时,可能会出现某些时间点值为null的情况,这会阻碍用户的进一步分析。为了更好地反映数据更改的程度,用户希望自动填充缺失值。因此,IoTDB系统引入了自动填充功能。

自动填充功能是指在对单列或多列进行时间序列查询时,根据用户指定的方法和有效时间范围填充空值。如果查询点的值不为 null,则填充函数将不起作用。

注意:在当前版本中,IoTDB为用户提供了两种方法:先前和线性。上一种方法用以前的值填充空白。线性方法通过线性拟合填充空白。并且 fill 函数只能在执行时间点查询时使用。

填充功能

  • 上一个函数

当查询时间戳的值为 null 时,使用上一个时间戳的值来填充空白。形式化的先前方法如下(有关详细语法,请参见第 7.1.3.6 节):

  1. select <path> from <prefixPath> where time = <T> fill(<data_type>[previous, <before_range>], …)

所有参数的详细说明见表3-4。

**表3-4 以前的填充参数列表**

参数名称(不区分大小写) 解释
路径,前缀路径 查询路径;必填项
T 查询时间戳(只能指定一个);必填项
data_type 填充方法使用的数据类型。可选值为 int32、int64、浮点型、双精度型、布尔值、文本;可选字段
before_range 表示上一种方法的有效时间范围。当存在 [T-before_range, T] 范围内的值时,前一种方法有效。如果未指定before_range,before_range采用默认值default_fill_interval;-1 表示无穷大;可选字段

在这里,我们给出了使用前面的方法填充空值的示例。SQL 语句如下:

  1. select temperature from root.sgcc.wf03.wt01 wheretime= 2017-11-01T16:37:50.000 fill(float[previous, 1m])

这意味着:

由于时间序列 root.sgcc.wf03.wt01.temperature在 2017-11-01T16:37:50.000 为空,因此系统使用之前的时间戳 2017-11-01T16:37:00.000(时间戳在 [2017-11-01T16:36:50.000, 2017-11-01T16:37:50.000] 时间范围内)进行填充和显示。

,此语句的执行结果如下所示:

值得注意的是,如果在指定的有效时间范围内没有值,系统将不会填充null值,如下所示:

  • 线性法

当查询时间戳的值为 null 时,使用上一个和下一个时间戳的值来填充空白。形式化的线性方法如下:

  1. select <path> from <prefixPath> where time = <T> fill(<data_type>[linear, <before_range>, <after_range>]…)
相关文章
|
13天前
|
存储 缓存 前端开发
Django 后端架构开发:存储层调优策略解析
Django 后端架构开发:存储层调优策略解析
32 2
|
13天前
|
存储 安全 数据安全/隐私保护
Django 后端架构开发:富文本编辑器权限管理与 UEditor 、Wiki接入,实现 Markdown 文本编辑器
Django 后端架构开发:富文本编辑器权限管理与 UEditor 、Wiki接入,实现 Markdown 文本编辑器
54 0
|
6天前
|
存储 监控 数据可视化
SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
【9月更文挑战第2天】SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
34 9
|
2天前
|
缓存 Java 应用服务中间件
随着微服务架构的兴起,Spring Boot凭借其快速开发和易部署的特点,成为构建RESTful API的首选框架
【9月更文挑战第6天】随着微服务架构的兴起,Spring Boot凭借其快速开发和易部署的特点,成为构建RESTful API的首选框架。Nginx作为高性能的HTTP反向代理服务器,常用于前端负载均衡,提升应用的可用性和响应速度。本文详细介绍如何通过合理配置实现Spring Boot与Nginx的高效协同工作,包括负载均衡策略、静态资源缓存、数据压缩传输及Spring Boot内部优化(如线程池配置、缓存策略等)。通过这些方法,开发者可以显著提升系统的整体性能,打造高性能、高可用的Web应用。
12 2
|
5天前
|
设计模式 开发框架 前端开发
在开发框架中实现事件驱动架构
【9月更文挑战第2天】事件驱动架构(EDA)通过事件机制让组件间解耦交互,适用于动态扩展和高响应性的系统。本文提供一个基于Beego框架实现事件驱动的示例,通过事件管理器注册和触发事件,实现用户注册和登录时的不同处理逻辑,展示了其在Web应用中的灵活性和高效性。
30 5
|
8天前
|
Web App开发 编解码 Linux
FFmpeg开发笔记(四十八)从0开始搭建直播系统的开源软件架构
音视频技术广泛应用于直播系统,涵盖电视、电脑、手机直播等多种形式,并延伸至在线教育、医疗咨询和安全监控等领域。直播系统涉及实时编解码与传输,技术实现较复杂。从用户角度看,直播系统分为来源方和观看方,但在开发者视角下还需加入云平台作为中转。本文提出一套基于全开源软件的直播系统架构,分为三层:开源直播录制软件(如OBS Studio、RTMP Streamer),开源流媒体服务器(如SRS、ZLMediaKit),以及开源音视频播放器(如VLC media player、ExoPlayer)。这些组件共同构成一个高效、灵活且成本低廉的直播解决方案。
29 0
FFmpeg开发笔记(四十八)从0开始搭建直播系统的开源软件架构
|
12天前
|
负载均衡 应用服务中间件 网络安全
Django后端架构开发:Nginx服务优化实践
Django后端架构开发:Nginx服务优化实践
29 2
|
13天前
|
消息中间件 存储 监控
Django后端架构开发:Celery异步调优,任务队列和调度
Django后端架构开发:Celery异步调优,任务队列和调度
29 1
|
7天前
|
前端开发 大数据 数据库
🔥大数据洪流下的决战:JSF 表格组件如何做到毫秒级响应?揭秘背后的性能魔法!💪
【8月更文挑战第31天】在 Web 应用中,表格组件常用于展示和操作数据,但在大数据量下性能会成瓶颈。本文介绍在 JavaServer Faces(JSF)中优化表格组件的方法,包括数据处理、分页及懒加载等技术。通过后端分页或懒加载按需加载数据,减少不必要的数据加载和优化数据库查询,并利用缓存机制减少数据库访问次数,从而提高表格组件的响应速度和整体性能。掌握这些最佳实践对开发高性能 JSF 应用至关重要。
20 0
|
7天前
|
Apache 开发者 Java
Apache Wicket揭秘:如何巧妙利用模型与表单机制,实现Web应用高效开发?
【8月更文挑战第31天】本文深入探讨了Apache Wicket的模型与表单处理机制。Wicket作为一个组件化的Java Web框架,提供了多种模型实现,如CompoundPropertyModel等,充当组件与数据间的桥梁。文章通过示例介绍了模型创建及使用方法,并详细讲解了表单组件、提交处理及验证机制,帮助开发者更好地理解如何利用Wicket构建高效、易维护的Web应用程序。

推荐镜像

更多
下一篇
DDNS