使用Apache IoTDB进行IoT相关开发的架构设计与功能实现(9)

简介: GROUP BY 语句为用户提供了三种类型的指定参数: 参数1:时间轴上的显示窗口 参数2:划分时间轴的时间间隔(应为正) 参数3:时间滑动步长(可选,不应小于时间间隔,如果未设置,则默认等于时间间隔)

降频聚合查询

本节主要介绍下频聚合查询的相关示例,使用分组依据子句,用于根据用户给定的分区条件对结果集进行分区,并聚合分区的结果集。IoTDB支持根据时间间隔和自定义滑动步长对结果集进行分区,不小于时间间隔,未设置则默认等于时间间隔。默认情况下,结果按时间升序排序。还可以使用Java JDBC用于执行相关查询的标准接口。

GROUP BY 语句为用户提供了三种类型的指定参数:

  • 参数1:时间轴上的显示窗口
  • 参数2:划分时间轴的时间间隔(应为正)
  • 参数3:时间滑动步长(可选,不应小于时间间隔,如果未设置,则默认等于时间间隔)

这三类参数的实际含义如下图5.2所示。其中,参数 3 是可选的。接下来,我们将给出三个典型的降频聚合示例:未指定参数 3、指定参数 3 和指定值过滤条件。

图5.2 三类参数的实际含义

不指定滑动步长的降频聚合查询

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01T00:00:00, 2017-11-07T23:00:00),1d);

这意味着:

由于用户未指定滑动步长,因此 GROUP BY 语句将默认将滑动步长设置为与时间间隔相同的时间间隔,即 。1d

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。将此参数(1d)作为时间间隔,显示窗口的开始时间作为划分原点,将时间轴划分为几个连续区间,分别是[0,1d),[1d,2d),[2d,3d)等。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为 [2017-11-01T00:00:00, 2017-11-07 T23:00:00]范围内的数据),并将这些数据映射到之前分段的时间轴(本例中每 1 天有映射的数据)从2017-11-01T00:00:00到2017-11-07T23:00:00:00)。

由于结果范围内都有每个时间段的数据要显示,因此 SQL 语句的执行结果如下所示:

指定滑动步长的降频聚合查询

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01 00:00:00, 2017-11-07 23:00:00), 3h, 1d);

这意味着:

由于用户将滑动步长参数指定为 1d,因此 GROUP BY 语句将延长时间间隔,而不是默认。1 day3 hours

这意味着我们希望每天从 00-00-00 到 02-59-59 获取 2017:11:01 到 2017:11:07 的所有数据。

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。以此参数(3h)为时间间隔,以显示窗口的开始时间为划分原点,将时间轴划分为几个连续区间,分别是[2017-11-01T00:00:00、2017-11-01T03:00:00)、[2017-11-02T00:00:00、2017-11-02T03:00:00)、[2017-11-03T00:00:00、2017-11-03T03:00:00)等。

上面 GROUP BY 语句的第三个参数是每个时间间隔移动的滑动步长。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为 [2017-11-01T00:00:00, 2017-11-07T23:00:00]范围内的数据),并将这些数据映射到之前分段的时间轴(本例中每 3 小时有映射的数据为每天从2017-11-01T00:00:00到2017-11-07T23:00:00:00)。

由于结果范围内都有每个时间段的数据要显示,因此 SQL 语句的执行结果如下所示:

指定值的降频聚合查询 过滤条件

SQL 语句为:

  1. selectcount(status), max_value(temperature) from root.ln.wf01.wt01 wheretime> 2017-11-01T01:00:00 and temperature > 20 group by([2017-11-01T00:00:00, 2017-11-07T23:00:00), 3h, 1d);

这意味着:

由于用户将滑动步长参数指定为 1d,因此 GROUP BY 语句将延长时间间隔,而不是默认。1 day3 hours

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。以此参数(3h)为时间间隔,以显示窗口的开始时间为划分原点,将时间轴划分为几个连续区间,分别是[2017-11-01T00:00:00、2017-11-01T03:00:00)、[2017-11-02T00:00:00、2017-11-02T03:00:00)、[2017-11-03T00:00:00、2017-11-03T03:00:00)等。

上面 GROUP BY 语句的第三个参数是每个时间间隔移动的滑动步长。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为(2017-11-01T01:00:00,2017-11-07T23:00:00]且满足root.ln.wf01.wt01.温度>20)范围内的数据, 并将这些数据映射到之前分段的时间轴(在这种情况下,从 3-2017-11T01:00:00 到 00-2017-11T07:23:00,每天每 00 小时都有映射的数据)。

左开和右闭合范围

SQL 语句为:

  1. selectcount(status) from root.ln.wf01.wt01 group by((5, 40], 5ms);

在此 sql 中,时间间隔为左打开和右关闭,因此我们不会包含时间戳 5 的值,而是包含时间戳 40 的值。

我们将得到如下结果:

时间 count(root.ln.wf01.wt01.status)
10 1
15 2
20 3
25 4
30 4
35 3
40 5

使用 Fill 子句的降频聚合查询

在按填充分组中,分组依据子句不支持滑动步骤

现在,分组按填充仅支持last_value聚合函数。

在按填充分组中不支持线性填充。

上一个和以前的区别
  • PREVIOUS 将填充任何空值,只要存在它之前的值不是空值。
  • PREVIOUSUNTILLAST 不会填充时间在该时间序列的最后一个时间之后的结果。

SQL 语句为:

  1. SELECTlast_value(temperature)FROM root.ln.wf01.wt01 GROUPBY([8, 39), 5m) FILL (int32[PREVIOUSUNTILLAST])

这意味着:

使用上一页填充方式填充源下频聚合查询结果。

GROUP BY 语句中 SELECT 后面的路径必须是聚合函数,否则系统会给出相应的错误提示,如下所示:

最后一点查询

在 IoT 设备快速更新数据的场景中,用户对 IoT 设备的最新点更感兴趣。

最后一个点查询是以三列格式返回给定时间序列的最新数据点。

SQL 语句定义为:

  1. select last <Path> [COMMA <Path>]* from < PrefixPath > [COMMA < PrefixPath >]* <DISABLE ALIGN>

这意味着:查询并返回时间序列前缀 Path.path 的最后一个数据点。

结果将以三列表格式返回。

  1. | Time | Path | Value |

示例 1:获取 root.ln.wf01.wt01.speed 的最后一点:

  1. > select lastspeedfromroot.ln.wf01.wt01
  2. | Time | Path | Value |
  3. | --- | ----------------------- | ----- |
  4. | 5 | root.ln.wf01.wt01.speed | 100 |

示例 2:获取 root.ln.wf01.wt01 的最后一个速度、状态和温度点

  1. > select lastspeed,status,temperaturefromroot.ln.wf01.wt01
  2. | Time | Path | Value |
  3. | --- | ---------------------------- | ----- |
  4. | 5 | root.ln.wf01.wt01.speed | 100 |
  5. | 7 | root.ln.wf01.wt01.status | true |
  6. | 9 | root.ln.wf01.wt01.temperature| 35.7 |

自动灌装

在IoTDB的实际使用中,在进行时间序列的查询操作时,可能会出现某些时间点值为null的情况,这会阻碍用户的进一步分析。为了更好地反映数据更改的程度,用户希望自动填充缺失值。因此,IoTDB系统引入了自动填充功能。

自动填充功能是指在对单列或多列进行时间序列查询时,根据用户指定的方法和有效时间范围填充空值。如果查询点的值不为 null,则填充函数将不起作用。

注意:在当前版本中,IoTDB为用户提供了两种方法:先前和线性。上一种方法用以前的值填充空白。线性方法通过线性拟合填充空白。并且 fill 函数只能在执行时间点查询时使用。

填充功能

  • 上一个函数

当查询时间戳的值为 null 时,使用上一个时间戳的值来填充空白。形式化的先前方法如下(有关详细语法,请参见第 7.1.3.6 节):

  1. select <path> from <prefixPath> where time = <T> fill(<data_type>[previous, <before_range>], …)

所有参数的详细说明见表3-4。

**表3-4 以前的填充参数列表**

参数名称(不区分大小写) 解释
路径,前缀路径 查询路径;必填项
T 查询时间戳(只能指定一个);必填项
data_type 填充方法使用的数据类型。可选值为 int32、int64、浮点型、双精度型、布尔值、文本;可选字段
before_range 表示上一种方法的有效时间范围。当存在 [T-before_range, T] 范围内的值时,前一种方法有效。如果未指定before_range,before_range采用默认值default_fill_interval;-1 表示无穷大;可选字段

在这里,我们给出了使用前面的方法填充空值的示例。SQL 语句如下:

  1. select temperature from root.sgcc.wf03.wt01 wheretime= 2017-11-01T16:37:50.000 fill(float[previous, 1m])

这意味着:

由于时间序列 root.sgcc.wf03.wt01.temperature在 2017-11-01T16:37:50.000 为空,因此系统使用之前的时间戳 2017-11-01T16:37:00.000(时间戳在 [2017-11-01T16:36:50.000, 2017-11-01T16:37:50.000] 时间范围内)进行填充和显示。

,此语句的执行结果如下所示:

值得注意的是,如果在指定的有效时间范围内没有值,系统将不会填充null值,如下所示:

  • 线性法

当查询时间戳的值为 null 时,使用上一个和下一个时间戳的值来填充空白。形式化的线性方法如下:

  1. select <path> from <prefixPath> where time = <T> fill(<data_type>[linear, <before_range>, <after_range>]…)
相关文章
|
2月前
|
SQL 前端开发 关系型数据库
如何开发一套研发项目管理系统?(附架构图+流程图+代码参考)
研发项目管理系统助力企业实现需求、缺陷与变更的全流程管理,支持看板可视化、数据化决策与成本优化。系统以MVP模式快速上线,核心功能包括需求看板、缺陷闭环、自动日报及关键指标分析,助力中小企业提升交付效率与协作质量。
|
2月前
|
NoSQL 数据可视化 安全
如何开发一套车辆管理系统?(附架构图+流程图+代码参考)
本文介绍了如何通过搭建车辆管理系统(VMS)帮助企业摆脱传统管理方式,实现流程化、可视化、合规化和自动化。内容涵盖系统架构、关键功能模块、数据模型、API设计、前后端实现及实施建议,提供可落地的技术方案,助力企业降低隐形成本、提升管理效率与透明度,实现数据驱动决策。
|
2月前
|
JSON 文字识别 BI
如何开发车辆管理系统中的加油管理板块(附架构图+流程图+代码参考)
本文针对中小企业在车辆加油管理中常见的单据混乱、油卡管理困难、对账困难等问题,提出了一套完整的系统化解决方案。内容涵盖车辆管理系统(VMS)的核心功能、加油管理模块的设计要点、数据库模型、系统架构、关键业务流程、API设计与实现示例、前端展示参考(React + Antd)、开发技巧与工程化建议等。通过构建加油管理系统,企业可实现燃油费用的透明化、自动化对账、异常检测与数据分析,从而降低运营成本、提升管理效率。适合希望通过技术手段优化车辆管理的企业技术人员与管理者参考。
|
2月前
|
消息中间件 缓存 JavaScript
如何开发ERP(离散制造-MTO)系统中的生产管理板块(附架构图+流程图+代码参考)
本文详解离散制造MTO模式下的ERP生产管理模块,涵盖核心问题、系统架构、关键流程、开发技巧及数据库设计,助力企业打通计划与执行“最后一公里”,提升交付率、降低库存与浪费。
|
1月前
|
前端开发 JavaScript BI
如何开发车辆管理系统中的车务管理板块(附架构图+流程图+代码参考)
本文介绍了中小企业如何通过车务管理模块提升车辆管理效率。许多企业在管理车辆时仍依赖人工流程,导致违章处理延误、年检过期、维修费用虚高等问题频发。将这些流程数字化,可显著降低合规风险、提升维修追溯性、优化调度与资产利用率。文章详细介绍了车务管理模块的功能清单、数据模型、系统架构、API与前端设计、开发技巧与落地建议,以及实现效果与验收标准。同时提供了数据库建表SQL、后端Node.js/TypeScript代码示例与前端React表单设计参考,帮助企业快速搭建并上线系统,实现合规与成本控制的双重优化。
|
2月前
|
消息中间件 JavaScript 前端开发
如何开发ERP(离散制造-MTO)系统中的技术管理板块(附架构图+流程图+代码参考)
本文详解ERP(离散制造-MTO)系统中的技术管理板块,涵盖产品定义、BOM、工序、工艺文件及变更控制的结构化与系统化管理。内容包括技术管理的核心目标、总体架构、关键组件、业务流程、开发技巧与最佳实践,并提供完整的参考代码,助力企业将技术数据转化为可执行的生产指令,提升制造效率与质量。
|
2月前
|
消息中间件 JavaScript 关系型数据库
如何开发一套ERP(离散制造-MTO)系统(附架构图+流程图+代码参考)
本文介绍了面向离散制造-MTO(按订单生产)模式的ERP系统设计与实现方法。内容涵盖ERP系统定义、总体架构设计、主要功能模块解析、关键业务流程(订单到交付、BOM展开、MRP逻辑、排产等)、开发技巧(DDD、微服务、事件驱动)、参考代码示例、部署上线注意事项及实施效果评估。旨在帮助企业与开发团队构建高效、灵活、可扩展的ERP系统,提升订单交付能力与客户满意度。
|
2月前
|
NoSQL 关系型数据库 BI
如何开发一套固定资产管理系统?(附架构图+流程图+代码参考)
固定资产管理涉及采购、入库、维修、盘点、报废等多个环节,是企业资产保值增值的关键。本文详解固定资产管理系统(FAMS)的核心功能、系统架构、资产全生命周期流程,并提供功能设计、开发实操技巧与关键代码示例,涵盖台账、申购、入库、报修、处置、盘点等重点模块。内容聚焦企业落地实践,帮助提升资产管理效率、降低风险、保障审计合规。
|
1月前
|
运维 监控 安全
公链开发中的高可用架构设计要点
本指南提供公链高可用架构的可复用流程与模板,涵盖目标拆解、先决条件、分步执行、故障排查及验收标准,结合跨链DApp与量化机器人案例,提升落地效率与系统稳定性。
|
1月前
|
消息中间件 运维 监控
交易所开发核心架构拆解与流程图
本文系统解析交易所架构核心要素,从接入层到清算结算,结合系统流程图拆解各模块职责与协作机制。深入剖析撮合引擎、账本设计与风控逻辑,建立性能、可用性、安全性等多维评估标准,并提供可落地的流程图绘制、压测优化与进阶学习路径,助力构建高效、安全、可扩展的交易系统。(238字)

推荐镜像

更多