浅谈踩坑记之一个Java线程池参数,差点引起线上事故(上)

简介: 浅谈踩坑记之一个Java线程池参数,差点引起线上事故

一、 前言

最近对重构Dubbo服务线程池调优,工作线程使用 CachedThreadPool 线程策略,可是上线之后,出现线程池一路上升,差点导致线上事故。

所以本篇文章对线程池揭开谜底。

二、Dubbo线程池介绍

Dubbo中 CachedThreadPool源代码

package org.apache.dubbo.common.threadpool.support.cached;
import org.apache.dubbo.common.URL;
import org.apache.dubbo.common.threadlocal.NamedInternalThreadFactory;
import org.apache.dubbo.common.threadpool.ThreadPool;
import org.apache.dubbo.common.threadpool.support.AbortPolicyWithReport;
import java.util.concurrent.Executor;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import static org.apache.dubbo.common.constants.CommonConstants.ALIVE_KEY;
import static org.apache.dubbo.common.constants.CommonConstants.CORE_THREADS_KEY;
import static org.apache.dubbo.common.constants.CommonConstants.DEFAULT_ALIVE;
import static org.apache.dubbo.common.constants.CommonConstants.DEFAULT_CORE_THREADS;
import static org.apache.dubbo.common.constants.CommonConstants.DEFAULT_QUEUES;
import static org.apache.dubbo.common.constants.CommonConstants.DEFAULT_THREAD_NAME;
import static org.apache.dubbo.common.constants.CommonConstants.QUEUES_KEY;
import static org.apache.dubbo.common.constants.CommonConstants.THREADS_KEY;
import static org.apache.dubbo.common.constants.CommonConstants.THREAD_NAME_KEY;
/**
 * This thread pool is self-tuned. Thread will be recycled after idle for one minute, and new thread will be created for
 * the upcoming request.
 *
 * @see java.util.concurrent.Executors#newCachedThreadPool()
 */
public class CachedThreadPool implements ThreadPool {
    @Override
    public Executor getExecutor(URL url) {
        //1 获取线程名称前缀 如果没有 默认是Dubbo
        String name = url.getParameter(THREAD_NAME_KEY, DEFAULT_THREAD_NAME);
        //2. 获取线程池核心线程数大小
        int cores = url.getParameter(CORE_THREADS_KEY, DEFAULT_CORE_THREADS);
        //3. 获取线程池最大线程数大小,默认整型最大值
        int threads = url.getParameter(THREADS_KEY, Integer.MAX_VALUE);
        //4. 获取线程池队列大小
        int queues = url.getParameter(QUEUES_KEY, DEFAULT_QUEUES);
        //5. 获取线程池多长时间被回收 单位毫秒
        int alive = url.getParameter(ALIVE_KEY, DEFAULT_ALIVE);
        //6. 使用JUC包里的ThreadPoolExecutor创建线程池
        return new ThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS,
                queues == 0 ? new SynchronousQueue<Runnable>() :
                        (queues < 0 ? new LinkedBlockingQueue<Runnable>()
                                : new LinkedBlockingQueue<Runnable>(queues)),
                new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
    }
}

可以看出,Dubbo本质上是使用JUC包里的ThreadPoolExecutor创建线程池,源码如下

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

大致流程图如下:


1、 当线程池小于corePoolSize时,新任务将创建一个新的线程,即使此时线程池中存在空闲线程。

2、 当线程池达到corePoolSize时,新提交的任务将被放入workQueue中,等待线程池任务调度执行。

3、 当workQueue已满,且maximumPoolSize>corePoolSize时,新任务会创建新线程执行任务。

4、 当提交任务数超过maximumPoolSize时,新提交任务由RejectedExecutionHandler处理。

5、 当线程池中超过corePoolSize时,空闲时间达到keepAliveTime时,关闭空闲线程。

另外,当设置了allowCoreThreadTimeOut(true)时,线程池中corePoolSize线程空闲时间达到keepAliveTime也将关闭。


RejectedExecutionHandler 默认提供了四种拒绝策略

1、AbortPolicy策略:该策略会直接抛出异常,阻止系统正常工作;

2、CallerRunsPolicy策略:如果线程池的线程数量达到上限,该策略会把任务队列中的任务放在调用者线程当中运行;

3、DiscardOledestPolicy策略:该策略会丢弃任务队列中最老的一个任务,也就是当前任务队列中最先被添加进去的,马上要被执行的那个任务,并尝试再次提交。

4、DiscardPolicy策略:该策略会默默丢弃无法处理的任务,不予任何处理。当然使用此策略,业务场景中需允许任务的丢失;

值得注意的是,Dubbo中拒绝策略 AbortPolicyWithReport 实际上是继承了 ThreadPoolExecutor.AbortPolicy 策略,主要是多打印了一些关键信息和堆栈信息。

相关文章
|
9天前
|
Java 调度
【源码】【Java并发】【线程池】邀请您从0-1阅读ThreadPoolExecutor源码
当我们创建一个`ThreadPoolExecutor`的时候,你是否会好奇🤔,它到底发生了什么?比如:我传的拒绝策略、线程工厂是啥时候被使用的? 核心线程数是个啥?最大线程数和它又有什么关系?线程池,它是怎么调度,我们传入的线程?...不要着急,小手手点上关注、点赞、收藏。主播马上从源码的角度带你们探索神秘线程池的世界...
67 0
【源码】【Java并发】【线程池】邀请您从0-1阅读ThreadPoolExecutor源码
|
13天前
|
存储 监控 Java
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
128 60
【Java并发】【线程池】带你从0-1入门线程池
|
2月前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
123 17
|
3月前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
3月前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
4月前
|
存储 缓存 监控
Java中的线程池深度解析####
本文深入探讨了Java并发编程中的核心组件——线程池,从其基本概念、工作原理、核心参数解析到应用场景与最佳实践,全方位剖析了线程池在提升应用性能、资源管理和任务调度方面的重要作用。通过实例演示和性能对比,揭示合理配置线程池对于构建高效Java应用的关键意义。 ####
|
4月前
|
Java
实现java执行kettle并传参数
实现java执行kettle并传参数
51 1
|
4月前
|
Java
线程池七大参数
核心线程数:线程池中的基本线程数量 最大线程数:当阻塞队列满了之后,逐一启动 最大线程的存活时间:当阻塞队列的任务执行完后,最大线长的回收时间 最大线程的存活时间单位 阻塞队列:当核心线程满后,后面来的任务都进入阻塞队列 线程工厂:用于生产线程
|
6月前
|
存储 缓存 Java
JAVA并发编程系列(11)线程池底层原理架构剖析
本文详细解析了Java线程池的核心参数及其意义,包括核心线程数量(corePoolSize)、最大线程数量(maximumPoolSize)、线程空闲时间(keepAliveTime)、任务存储队列(workQueue)、线程工厂(threadFactory)及拒绝策略(handler)。此外,还介绍了四种常见的线程池:可缓存线程池(newCachedThreadPool)、定时调度线程池(newScheduledThreadPool)、单线程池(newSingleThreadExecutor)及固定长度线程池(newFixedThreadPool)。
|
7月前
|
安全 Java 数据库
一天十道Java面试题----第四天(线程池复用的原理------>spring事务的实现方式原理以及隔离级别)
这篇文章是关于Java面试题的笔记,涵盖了线程池复用原理、Spring框架基础、AOP和IOC概念、Bean生命周期和作用域、单例Bean的线程安全性、Spring中使用的设计模式、以及Spring事务的实现方式和隔离级别等知识点。

热门文章

最新文章