JMeter与Python的多重交响:从入门到高级应用(上)

简介: 在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。**”**Jython-----

在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。

Jython

Jython是Python语言的Java实现,它允许您在JMeter中使用Python脚本,不需要额外的JAR包。

一、下载并配置

  1. 官网下载地址:Downloads | Jython

image.png

  1. 网盘链接:downloads > Jython 提取码:ux02

  2. 将下载的jar包放到Jmeter的安装路径/lib,如: D:\application\apache-jmeter-5.1.1\lib

image.png

  1. 切记,重启 jmeter

二、使用技巧

新增一个JSR223,选择语言为“jython”;
图片

注意:由于这个包使用的python版本为 2.7,所以写代码的时候不能全搬python3的语法过来玩。

示例一:前后置脚本中写python代码。

# jsr223 前置代码中编写:
"""该脚本用于加密登录信息"""
import hashlib
import sys
import time
import json

def password_srt(pubkey,  password):
    time_str = str(time.time())
    sign_str = str(pubkey) + time_str + str(password)
    sign = hashlib.md5(sign_str.encode('utf-8')).hexdigest()
    res = {'sign': sign, 'pubkey': pubkey, 'password': password}
    res = json.dumps(res)
    return res

result = password_srt(1234,5678)
log.info(result)
vars.put("secrity",result) # 设置到变量,为后续取样器使用。

贴图:

image.png

示例二:后置脚本中写python代码

# jsr223 后置脚本代码
import json
result = prev.getResponseDataAsString(); # 固定写法,获取响应结果
log.info("------"+result)   # 这里使用print 会打印不到日志里面来显示。
json_data = json.loads(result)  # 转python识别的字典对象
token = json_data.get("token") # 获取token值
log.info(token)
vars.put("token",token)

贴图:

image.png

添加一个debug sample来检查结果:
image.png

最终执行结果:
image.png

一些小Tips!!:

  • 性能流泪: 使用 Python 脚本会引入性能问题,因为 Python 是一种解释型语言,相比于 JMeter 自带的 Java 脚本,Python 脚本的执行效率可能会稍低,勇哥踩过这个坑!!!

  • 维护想哭: 逻辑分散在 JMeter 的测试计划和 Python 脚本之间时,会导致维护困难;也不利于团队协作!

  • 依赖一坨翔: Python是2.7版本且难以支持第三方python库使用,要写复杂的代码也是很头疼的!

  • 调试难上天: JMeter 中调试 Python 脚本真是看花眼,因为你看的信息都是jmeter输出的,定位问题一言难尽!

总结

以上就是勇哥今天为各位小伙伴准备的内容,如果你想了解更多关于Python自动化测试的知识和技巧,欢迎关注我:公众号\博客\CSDN\B站:测试玩家勇哥;我会不定期地分享更多的精彩内容。感谢你的阅读和支持!


题外话,勇哥打算把新建的技术交流群,打造成一个活跃的高质量技术群。工作中遇到的技术问题,都可以在里面咨询大家,还有工作内推的机会。有兴趣的小伙伴,欢迎加我(记得备注是进群还是报名学习)👇👇👇**


勇哥,10年落魄测试老司机,技术栈偏python,目前在一家超大型房产公司担任自动化测试主管,日常工作比较繁杂,主要负责自动化测试,性能测试、软件质量管理及人员管理。工作之余专注于为粉丝进行简历修改、面试辅导、模拟面试、资料分享、一对一自动化测试教学辅导等副业发展。目前已服务十多位小伙伴,取得高薪offer。

关注公众号,测试干货及时送达

往期精选文章👇:
接口自动化测试项目2.0,让你像Postman一样编写测试用例,支持多环境切换、多业务依赖、数据库断言等
揭秘抓包利器:Python和Mitmproxy让您轻松实现接口请求抓取与分析!
构建高效的接口自动化测试框架思路
Pytest 快速入门
接口自动化之测试数据动态生成并替换
requests模块该如何封装?
接口自动化如何封装mysql操作
一文看懂python如何执行cmd命令
最通俗易懂python操作数据库
python-Threading多线程之线程锁
python正则一篇搞掂
性能测试之必备知识

性能分析思

Python + ChatGPT来实现一个智能对话的钉钉机器人
一文看懂python如何执行cmd命令
相关文章
|
21天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
26天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
1月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
52 3
|
1月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
62 3
|
22天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
22天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
37 7
|
23天前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
37 5
|
22天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
59 3
|
1月前
|
存储 前端开发 API
Python在移动应用开发中的应用日益广泛
Python在移动应用开发中的应用日益广泛
46 10
|
24天前
|
缓存 开发者 Python
深入探索Python中的装饰器:原理、应用与最佳实践####
本文作为技术性深度解析文章,旨在揭开Python装饰器背后的神秘面纱,通过剖析其工作原理、多样化的应用场景及实践中的最佳策略,为中高级Python开发者提供一份详尽的指南。不同于常规摘要的概括性介绍,本文摘要将直接以一段精炼的代码示例开篇,随后简要阐述文章的核心价值与读者预期收获,引领读者快速进入装饰器的世界。 ```python # 示例:一个简单的日志记录装饰器 def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling {func.__name__} with args: {a
37 2