RPC框架-dubbo:架构及源码分析-初篇

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 在自学或面试dubbo时,相关的问题有很多,例如dubbo 的基本工作原理,这是使用过dubbo后应该知道的。包括dubbo的分层架构、长短链接选择、二进制协议支持;之后是使用方式(服务的注册、发现、调用方式),基础配置(超时时间、线程数),这些是最基本的。 在这些问题之后,就可以继续深入底层:关于连接方式,使用长连接还是短连接?为什么? dubbo的二进制协议支持哪些,之间有什么区别/优缺点等等,也可以考察在使用过程中遇到过哪些问题,是如何解决的。这些都需要深入理解,并且有真实、长时间使用经验。

一 dubbo相关问题

1.1 基础问题

   在自学或面试dubbo时,相关的问题有很多,例如dubbo 的基本工作原理,这是使用过dubbo后应该知道的。包括dubbo的分层架构、长短链接选择、二进制协议支持;之后是使用方式(服务的注册、发现、调用方式),基础配置(超时时间、线程数),这些是最基本的。

   在这些问题之后,就可以继续深入底层:关于连接方式,使用长连接还是短连接?为什么? dubbo的二进制协议支持哪些,之间有什么区别/优缺点等等,也可以考察在使用过程中遇到过哪些问题,是如何解决的。这些都需要深入理解,并且有真实、长时间使用经验。

1.2 dubbo要解决的需求

   在大规模服务化之前,应用可能只是通过 RMI 或 Hessian 等工具,简单的暴露和引用远程服务,通过配置服务的URL地址进行调用,通过 F5 等硬件进行负载均衡。

   当服务越来越多时,服务 URL 配置管理变得非常困难,F5 硬件负载均衡器的单点压力也越来越大。 此时需要一个服务注册中心,动态地注册和发现服务,使服务的位置透明。并通过在消费方获取服务提供方地址列表,实现软负载均衡和 Failover,降低对 F5 硬件负载均衡器的依赖,也能减少部分成本。

   当进一步发展,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。 这时,需要自动画出应用间的依赖关系图,以帮助架构师理清关系。

   接着,服务的调用量越来越大,服务的容量问题就暴露出来,这个服务需要多少机器支撑?什么时候该加机器? 为了解决这些问题,第一步,要将服务现在每天的调用量,响应时间,都统计出来,作为容量规划的参考指标。其次,要可以动态调整权重,在线上,将某台机器的权重一直加大,并在加大的过程中记录响应时间的变化,直到响应时间到达阈值,记录此时的访问量,再以此访问量乘以机器数反推总容量。

二 dubbo架构

关于dubbo架构,官方有如下两张图进行了描述:

2.1 dubbo基本模块图(逻辑结构抽象图)

节点角色说明:

Provider - 暴露服务的服务提供方

Consumer - 调用远程服务的服务消费方

Registry - 服务注册与发现的注册中心

Monitor - 统计服务的调用次数和调用时间的监控中心

Container - 服务运行容器

调用关系说明:

0、服务容器负责启动,加载,运行服务提供者。

1、服务提供者在启动时,向注册中心注册自己提供的服务。

2、服务消费者在启动时,向注册中心订阅自己所需的服务。

3、注册中心返回服务提供者地址列表给消费者,如果有变更,注册中心将基于长连接推送变更数据给消费者。

4、服务消费者,从提供者地址列表中,基于软负载均衡算法,选一台提供者进行调用,如果调用失败,再选另一台调用。

5、服务消费者和提供者,在内存中累计调用次数和调用时间,定时每分钟发送一次统计数据到监控中心。

Dubbo 架构具有以下几个特点,分别是连通性、健壮性、伸缩性、以及向未来架构的升级性。

2.2 dubbo运行流程分析图(调用链路图)

2.3 dubbo服务暴露流程

执行流程:

2.4 dubbo代码结构

dubbo的2.7.2版本,代码结构如下:

三 连接方式

根据dubbo协议参考手册,Dubbo 缺省协议采用单一长连接和 NIO 异步通讯,适合于小数据量大并发的服务调用,以及服务消费者机器数远大于服务提供者机器数的情况。

反之,Dubbo 缺省协议不适合传送大数据量的服务,比如传文件,传视频等,除非请求量很低。

  • Transporter: mina, netty, grizzy
  • Serialization: dubbo, hessian2, java, json
  • Dispatcher: all, direct, message, execution, connection
  • ThreadPool: fixed, cached

3.1 特性

缺省协议,使用基于 mina 1.1.7 和 hessian 3.2.1 的 tbremoting 交互。

  • 连接个数:单连接
  • 连接方式:长连接
  • 传输协议:TCP
  • 传输方式:NIO 异步传输
  • 序列化:Hessian 二进制序列化
  • 适用范围:传入传出参数数据包较小(建议小于100K),消费者比提供者个数多,单一消费者无法压满提供者,尽量不要用 dubbo 协议传输大文件或超大字符串。
  • 适用场景:常规远程服务方法调用

3.2 约束

  • 参数及返回值需实现 Serializable 接口
  • 参数及返回值不能自定义实现 List, Map, Number, Date, Calendar 等接口,只能用 JDK 自带的实现,因为 hessian 会做特殊处理,自定义实现类中的属性值都会丢失。
  • Hessian 序列化,只传成员属性值和值的类型,不传方法或静态变量。

3.3 配置

Dubbo 协议缺省每服务每提供者每消费者使用单一长连接,如果数据量较大,可以使用多个连接。

<dubbo:service connections="1"/>
<dubbo:reference connections="1"/>
  • <dubbo:service connections="0"><dubbo:reference connections="0"> 表示该服务使用 JVM 共享长连接。缺省
  • <dubbo:service connections="1"><dubbo:reference connections="1"> 表示该服务使用独立长连接。
  • <dubbo:service connections="2"><dubbo:reference connections="2"> 表示该服务使用独立两条长连接。

为防止被大量连接撑挂,可在服务提供方限制大接收连接数,以实现服务提供方自我保护。

<dubbo:protocol name="dubbo" accepts="1000" />

dubbo.properties 配置:

dubbo.service.protocol=dubbo

如果采用的是yml配置文件,那么配置信息如下:

dubbo:
  protocol:
    name: dubbo

3.4 常见问题解答

3.4.1 为什么要消费者比提供者个数多

因为dubbo 协议采用单一长连接,假设网络为千兆网卡,根据测试经验数据每条连接最多只能压满 7MByte(不同的环境可能不一样,供参考),理论上 1 个服务提供者需要 20 个服务消费者才能压满网卡。

3.4.2 为什么不能传大包?

因为dubbo 协议采用单一长连接,如果每次请求的数据包大小为 500KByte,假设网络为千兆网卡 3,每条连接最大 7MByte(不同的环境可能不一样,供参考),单个服务提供者的 TPS(每秒处理事务数)最大为:128MByte / 500KByte = 262。单个消费者调用单个服务提供者的 TPS(每秒处理事务数)最大为:7MByte / 500KByte = 14。如果能接受,可以考虑使用,否则网络将成为瓶颈。

3.4.3 为什么采用异步单一长连接?

因为服务的现状大都是服务提供者少,通常只有几台机器,而服务的消费者多,可能整个网站都在访问该服务,比如 Morgan 的提供者只有 6 台提供者,却有上百台消费者,每天有 1.5 亿次调用,如果采用常规的 hessian 服务,服务提供者很容易就被压跨,通过单一连接,保证单一消费者不会压死提供者,长连接,减少连接握手验证等,并使用异步 IO,复用线程池,防止 C10K 问题。

四 rpc支持协议

相关文件在jar包内,META-INF/dubbo.internal下的org.apache.dubbo.rpc.Protocol,

支持的协议内容如下:

filter=org.apache.dubbo.rpc.protocol.ProtocolFilterWrapper
listener=org.apache.dubbo.rpc.protocol.ProtocolListenerWrapper
mock=org.apache.dubbo.rpc.support.MockProtocol
dubbo=org.apache.dubbo.rpc.protocol.dubbo.DubboProtocol
injvm=org.apache.dubbo.rpc.protocol.injvm.InjvmProtocol
rmi=org.apache.dubbo.rpc.protocol.rmi.RmiProtocol
hessian=org.apache.dubbo.rpc.protocol.hessian.HessianProtocol
http=org.apache.dubbo.rpc.protocol.http.HttpProtocol
org.apache.dubbo.rpc.protocol.webservice.WebServiceProtocol
thrift=org.apache.dubbo.rpc.protocol.thrift.ThriftProtocol
native-thrift=org.apache.dubbo.rpc.protocol.nativethrift.ThriftProtocol
memcached=org.apache.dubbo.rpc.protocol.memcached.MemcachedProtocol
redis=org.apache.dubbo.rpc.protocol.redis.RedisProtocol
rest=org.apache.dubbo.rpc.protocol.rest.RestProtocol
xmlrpc=org.apache.dubbo.xml.rpc.protocol.xmlrpc.XmlRpcProtocol
registry=org.apache.dubbo.registry.integration.RegistryProtocol
qos=org.apache.dubbo.qos.protocol.QosProtocolWrapper
相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1月前
|
数据采集 监控 前端开发
二级公立医院绩效考核系统源码,B/S架构,前后端分别基于Spring Boot和Avue框架
医院绩效管理系统通过与HIS系统的无缝对接,实现数据网络化采集、评价结果透明化管理及奖金分配自动化生成。系统涵盖科室和个人绩效考核、医疗质量考核、数据采集、绩效工资核算、收支核算、工作量统计、单项奖惩等功能,提升绩效评估的全面性、准确性和公正性。技术栈采用B/S架构,前后端分别基于Spring Boot和Avue框架。
|
1月前
|
存储 分布式计算 关系型数据库
架构/技术框架调研
本文介绍了微服务间事务处理、调用、大数据处理、分库分表、大文本存储及数据缓存的最优解决方案。重点讨论了Seata、Dubbo、Hadoop生态系统、MyCat、ShardingSphere、对象存储服务和Redis等技术,提供了详细的原理、应用场景和优缺点分析。
|
2月前
|
人工智能 前端开发 JavaScript
前端架构思考 :专注于多框架的并存可能并不是唯一的方向 — 探讨大模型时代前端的分层式微前端架构
随着前端技术的发展,微前端架构成为应对复杂大型应用的流行方案,允许多个团队使用不同技术栈并将其模块化集成。然而,这种设计在高交互性需求的应用中存在局限,如音视频处理、AI集成等。本文探讨了传统微前端架构的不足,并提出了一种新的分层式微前端架构,通过展示层与业务层的分离及基于功能的横向拆分,以更好地适应现代前端需求。
|
2月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
98 0
|
1月前
|
监控
SMoA: 基于稀疏混合架构的大语言模型协同优化框架
通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。
44 6
SMoA: 基于稀疏混合架构的大语言模型协同优化框架
|
1月前
|
自然语言处理 负载均衡 API
gRPC 一种现代、开源、高性能的远程过程调用 (RPC) 可以在任何地方运行的框架
gRPC 是一种现代开源高性能远程过程调用(RPC)框架,支持多种编程语言,可在任何环境中运行。它通过高效的连接方式,支持负载平衡、跟踪、健康检查和身份验证,适用于微服务架构、移动设备和浏览器客户端连接后端服务等场景。gRPC 使用 Protocol Buffers 作为接口定义语言,支持四种服务方法:一元 RPC、服务器流式处理、客户端流式处理和双向流式处理。
|
7月前
|
Dubbo Java 应用服务中间件
微服务学习 | Springboot整合Dubbo+Nacos实现RPC调用
微服务学习 | Springboot整合Dubbo+Nacos实现RPC调用
|
2月前
|
Dubbo Java 应用服务中间件
Spring Cloud Dubbo:微服务通信的高效解决方案
【10月更文挑战第15天】随着信息技术的发展,微服务架构成为企业应用开发的主流。Spring Cloud Dubbo结合了Dubbo的高性能RPC和Spring Cloud的生态系统,提供高效、稳定的微服务通信解决方案。它支持多种通信协议,具备服务注册与发现、负载均衡及容错机制,简化了服务调用的复杂性,使开发者能更专注于业务逻辑的实现。
70 2
|
4月前
|
Dubbo Java 应用服务中间件
💥Spring Cloud Dubbo火爆来袭!微服务通信的终极利器,你知道它有多强大吗?🔥
【8月更文挑战第29天】随着信息技术的发展,微服务架构成为企业应用开发的主流模式,而高效的微服务通信至关重要。Spring Cloud Dubbo通过整合Dubbo与Spring Cloud的优势,提供高性能RPC通信及丰富的生态支持,包括服务注册与发现、负载均衡和容错机制等,简化了服务调用管理并支持多种通信协议,提升了系统的可伸缩性和稳定性,成为微服务通信领域的优选方案。开发者仅需关注业务逻辑,而无需过多关心底层通信细节,使得Spring Cloud Dubbo在未来微服务开发中将更加受到青睐。
89 0
|
26天前
|
Dubbo Cloud Native 应用服务中间件
阿里云的 Dubbo 和 Nacos 深度整合,提供了高效的服务注册与发现、配置管理等关键功能,简化了微服务治理,提升了系统的灵活性和可靠性。
在云原生时代,微服务架构成为主流。阿里云的 Dubbo 和 Nacos 深度整合,提供了高效的服务注册与发现、配置管理等关键功能,简化了微服务治理,提升了系统的灵活性和可靠性。示例代码展示了如何在项目中实现两者的整合,通过 Nacos 动态调整服务状态和配置,适应多变的业务需求。
37 2
下一篇
DataWorks