Pandas 2.1发布了

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 2023年3月1日,Pandas 发布了2.0版本。6个月后(8月30日),更新了新的2.1版。让我们看看他有什么重要的更新。

更好的PyArrow支持

PyArrow是在Panda 2.0中新加入的后端,对于大数据来说提供了优于NumPy的性能。Pandas 2.1增强了对PyArrow的支持。官方在这次更新中使用最大的高亮字体宣布 PyArrow 将是 Pandas 3.0的基础依赖,这说明Panda 是认定了PyArrow了。

映射所有数组类型时可以忽略NaN类值

在以前版本,可空类型上调用map会在存在类似nan的值时触发错误。而现在可以设定na_action= " ignore "参数,将忽略所有类型数组中的nan值。

以下是发行说明中的一个例子:

 In [5]: ser = pd.Series(["a", "b", np.nan], dtype="category")

 In [6]: ser.map(str.upper, na_action="ignore")
 Out[6]: 
 0      A
 1      B
 2    NaN
 dtype: category
 Categories (2, object): ['A', 'B']

 ##no errors !

字符串的默认类型

默认情况下,所有字符串都存储在具有NumPy对象dtype的列中,如果你安装了PyArrow,则会将所有字符串推断为PyArrow支持的字符串,这个选项需要使用这个参数设置:

 pd.options.future.infer_string = True

Copy-On-Write改进

写时复制在很久以前就出现了。在Pandas中有时你对数据做一些操作,修改的不是数据源的副本,而是数据源本身。例子:

 In [5]: pd.options.mode.copy_on_write = True

 In [6]: df = pd.DataFrame({"foo": [1, 2, 3], "bar": [4, 5, 6]})

 In [7]: subset = df["foo"]

 In [8]: subset.iloc[0] = 100

 In [9]: df
 Out[9]: 
    foo  bar
 0    1    4
 1    2    5
 2    3    6

写时复制是一种防止意外可变性的机制。当从其他数据推断数据时,可以保证只更改副本。这意味着代码将更加统一。Pandas将识别何时复制对象,并且只在必要时复制对象。在Pandas 2.1中,花了很多精力使许多地方的Copy-On-Write保持一致。

新的日期方法

在Pandas 2.1中,增加了一组新处理日期的新方法。

以下是一些最值得注意的方法:

  • Series.dt.is_month_start,
  • Series.dt.is_month_end,
  • Series.dt.is_year_start,
  • Series.dt.is_year_end,
  • Series.dt.is_quarter_start,
  • Series.dt.is_quarter_end,
  • Series.dt.days_in_month,
  • Series.dt.unit,
  • Series.dt.normalize,
  • Series.dt.day_name(),
  • Series.dt.month_name(),

这些方法对我们实际应用来说还是很好的

Python 3.9

pandas 2.1.0支持的最低版本是Python 3.9,也就是说我们如果有低版本的Python项目,要尽快升级了,或者说新项目的话最低也要3.9了

总结

在这次更新中提到了Pandas3.0,说明官方已经开始对它进行设计了,而且也强调了PyArrow的重要性,所以要用好Pandas,PyArrow的基础是需要掌握的。官网的地址:

https://avoid.overfit.cn/post/2604f28a0aef4ae99cf4df15b977210c

目录
相关文章
|
18天前
|
Python
Pandas 安装
10月更文挑战第26天
103 59
Pandas 安装
|
6天前
|
机器学习/深度学习 数据挖掘 数据处理
Pandas库
Pandas库是Python中进行数据分析和处理的强大工具,通过其丰富的功能和简洁的API,可以高效地完成各种数据处理任务,为后续的数据分析和机器学习提供了有力的支持。
|
18天前
|
数据采集 数据可视化 数据挖掘
Pandas 简介
10月更文挑战第25天
28 6
|
4月前
|
数据挖掘 Linux 数据处理
什么是Pandas库?
【7月更文挑战第8天】什么是Pandas库?
55 2
|
6月前
|
索引 Python
【Pandas】- pandas入门
【Pandas】- pandas入门
|
6月前
|
数据挖掘 索引 Python
|
Rust 分布式计算 安全
Pandas 2.0正式版发布: Pandas 1.5,Polars,Pandas 2.0 速度对比测试
Pandas 2.0正式版在4月3日已经发布了,以后我们pip install默认安装的就是2.0版了,Polars 是最近比较火的一个DataFrame 库,最近在kaggle上经常使用,所以这里我们将对比下 Pandas 1.5,Polars,Pandas 2.0 。看看在速度上 Pandas 2.0有没有优势。
276 0
Pandas 2.0正式版发布: Pandas 1.5,Polars,Pandas 2.0 速度对比测试
|
机器学习/深度学习 决策智能 计算机视觉
Pandas库之DataFrame学习笔记
Pandas库之DataFrame学习笔记
179 0
|
Python
pandas 高级(三)
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 pandas 高级,读本文之前建议先修:pandas 入门,后续还会发出一篇 pandas 进阶供读者进行进一步的学习了解。
107 0
pandas 高级(三)
|
数据采集 资源调度 Python
pandas 高级(二)
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 pandas 高级,读本文之前建议先修:pandas 入门,后续还会发出一篇 pandas 进阶供读者进行进一步的学习了解。
174 0
pandas 高级(二)
下一篇
无影云桌面