阿里的面试官问了个问题,如果corePolllSize=10,MaxPollSize=20,如果来了25个线程 怎么办,
先 达到 corePoolSize,然后 优先放入队列,然后在到MaxPollSize;然后拒绝;
答案:
当一个任务通过execute(Runnable)方法欲添加到线程池时:
1、 如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。
2、 如果此时线程池中的数量等于 corePoolSize,但是缓冲队列 workQueue未满,那么任务被放入缓冲队列。
3、如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,再有新的线程,开始增加线程池的线程数量处理新的线程,直到maximumPoolSize;
4、 如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。也就是:处理任务的优先级为:核心线程corePoolSize、任务队列workQueue、最大线程 maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。
5、 当线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。
当线程数小于corePoolSize时,提交一个任务创建一个线程(即使这时有空闲线程)来执行该任务。
当线程数大于等于corePoolSize,首选将任务添加等待队列workQueue中(这里的workQueue是上面的BlockingQueue),等有空闲线程时,让空闲线程从队列中取任务。
当等待队列满时,如果线程数量小于maximumPoolSize则创建新的线程,否则使用拒绝线程处理器来处理提交的任务。
java多线程开发时,常常用到线程池技术,这篇文章是对创建java线程池时的七个参数的详细解释。
从源码中可以看出,线程池的构造函数有7个参数,分别是corePoolSize、maximumPoolSize、keepAliveTime、unit、workQueue、threadFactory、handler。下面会对这7个参数一一解释。
一、corePoolSize 线程池核心线程大小
线程池中会维护一个最小的线程数量,即使这些线程处理空闲状态,他们也不会 被销毁,除非设置了allowCoreThreadTimeOut。这里的最小线程数量即是corePoolSize。
二、maximumPoolSize 线程池最大线程数量
一个任务被提交到线程池后,首先会缓存到工作队列(后面会介绍)中,如果工作队列满了,则会创建一个新线程,然后从工作队列中取出一个任务交由新线程来处理,而将刚提交的任务放入工作队列。线程池不会无限制的去创建新线程,它会有一个最大线程数量的限制,这个数量即由maximunPoolSize来指定。
三、keepAliveTime 空闲线程存活时间
一个线程如果处于空闲状态,并且当前的线程数量大于corePoolSize,那么在指定时间后,这个空闲线程会被销毁,这里的指定时间由keepAliveTime来设定
四、unit 空间线程存活时间单位
keepAliveTime的计量单位
五、workQueue 工作队列
新任务被提交后,会先进入到此工作队列中,任务调度时再从队列中取出任务。jdk中提供了四种工作队列:
什么是阻塞队列?
阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
阻塞队列提供了四种处理方法:
方法\处理方式 | 抛出异常 | 返回特殊值 | 一直阻塞 | 超时退出 |
插入方法 | add(e) | offer(e) | put(e) | offer(e,time,unit) |
移除方法 | remove() | poll() | take() | poll(time,unit) |
检查方法 | element() | peek() | 不可用 | 不可用 |
- 抛出异常:是指当阻塞队列满时候,再往队列里插入元素,会抛出IllegalStateException(“Queue full”)异常。当队列为空时,从队列里获取元素时会抛出NoSuchElementException异常 。
- 返回特殊值:插入方法会返回是否成功,成功则返回true。移除方法,则是从队列里拿出一个元素,如果没有则返回null
- 一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到拿到数据,或者响应中断退出。当队列空时,消费者线程试图从队列里take元素,队列也会阻塞消费者线程,直到队列可用。
- 超时退出:当阻塞队列满时,队列会阻塞生产者线程一段时间,如果超过一定的时间,生产者线程就会退出。
Java里的阻塞队列
JDK7提供了7个阻塞队列。分别是
- ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
- LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
- PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
- DelayQueue:一个使用优先级队列实现的无界阻塞队列。
- SynchronousQueue:一个不存储元素的阻塞队列。
- LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
- LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
ArrayBlockingQueue
ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。默认情况下不保证访问者公平的访问队列,所谓公平访问队列是指阻塞的所有生产者线程或消费者线程,当队列可用时,可以按照阻塞的先后顺序访问队列,即先阻塞的生产者线程,可以先往队列里插入元素,先阻塞的消费者线程,可以先从队列里获取元素。通常情况下为了保证公平性会降低吞吐量。我们可以使用以下代码创建一个公平的阻塞队列:
ArrayBlockingQueue fairQueue = new ArrayBlockingQueue(1000,true)
访问者的公平性是使用可重入锁实现的,代码如下:
public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); }
LinkedBlockingQueue
LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。
PriorityBlockingQueue
PriorityBlockingQueue是一个支持优先级的无界队列。默认情况下元素采取自然顺序排列,也可以通过比较器comparator来指定元素的排序规则。元素按照升序排列。
DelayQueue
DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。我们可以将DelayQueue运用在以下应用场景:
- 缓存系统的设计:可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
- 定时任务调度。使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,从比如TimerQueue就是使用DelayQueue实现的。
队列中的Delayed必须实现compareTo来指定元素的顺序。比如让延时时间最长的放在队列的末尾。实现代码如下:
public int compareTo(Delayed other) { if (other == this) // compare zero ONLY if same object return 0; if (other instanceof ScheduledFutureTask) { ScheduledFutureTask x = (ScheduledFutureTask)other; long diff = time - x.time; if (diff < 0) return -1; else if (diff > 0) return 1; else if (sequenceNumber < x.sequenceNumber) return -1; else return 1; } long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS)); return (d == 0) ? 0 : ((d < 0) ? -1 : 1); }
如何实现Delayed接口
我们可以参考ScheduledThreadPoolExecutor里ScheduledFutureTask类。这个类实现了Delayed接口。首先:在对象创建的时候,使用time记录前对象什么时候可以使用,代码如下:
ScheduledFutureTask(Runnable r, V result, long ns, long period) { super(r, result); this.time = ns; this.period = period; this.sequenceNumber = sequencer.getAndIncrement(); }
然后使用getDelay可以查询当前元素还需要延时多久,代码如下:
public long getDelay(TimeUnit unit) { return unit.convert(time - now(), TimeUnit.NANOSECONDS); }
通过构造函数可以看出延迟时间参数ns的单位是纳秒,自己设计的时候最好使用纳秒,因为getDelay时可以指定任意单位,一旦以纳秒作为单位,而延时的时间又精确不到纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。
如何实现延时队列
延时队列的实现很简单,当消费者从队列里获取元素时,如果元素没有达到延时时间,就阻塞当前线程。
long delay = first.getDelay(TimeUnit.NANOSECONDS); if (delay <= 0) return q.poll(); else if (leader != null) available.await();
SynchronousQueue
SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合于传递性场景,比如在一个线程中使用的数据,传递给另外一个线程使用,SynchronousQueue的吞吐量高于LinkedBlockingQueue 和 ArrayBlockingQueue。
LinkedTransferQueue
LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻塞队列LinkedTransferQueue多了tryTransfer和transfer方法。
transfer方法。如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码如下:
Node pred = tryAppend(s, haveData); return awaitMatch(s, pred, e, (how == TIMED), nanos);
第一行代码是试图把存放当前元素的s节点作为tail节点。第二行代码是让CPU自旋等待消费者消费元素。因为自旋会消耗CPU,所以自旋一定的次数后使用Thread.yield()方法来暂停当前正在执行的线程,并执行其他线程。
tryTransfer方法。则是用来试探下生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回false。和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回。而transfer方法是必须等到消费者消费了才返回。
对于带有时间限制的tryTransfer(E e, long timeout, TimeUnit unit)方法,则是试图把生产者传入的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。
LinkedBlockingDeque
LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的你可以从队列的两端插入和移出元素。双端队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirst,addLast,offerFirst,offerLast,peekFirst,peekLast等方法,以First单词结尾的方法,表示插入,获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入,获取或移除双端队列的最后一个元素。另外插入方法add等同于addLast,移除方法remove等效于removeFirst。但是take方法却等同于takeFirst,不知道是不是Jdk的bug,使用时还是用带有First和Last后缀的方法更清楚。在初始化LinkedBlockingDeque时可以初始化队列的容量,用来防止其再扩容时过渡膨胀。另外双向阻塞队列可以运用在“工作窃取”模式中。
参考: