AI智能机器人的语音识别是如何实现的 ?

简介: 语音的交互是一个认知与辨识的过程,所以绝对不能与语法、语义和用语规范等方面分裂开来。系统会先对原始语音进行处理,再进行特征提取,消除噪声和不同说话人的差异带来的影响,使处理后的信号能够更完整的反映语音的本质特征提取。

什么是智能语音识别系统?语音识别实际就是将人类说话的内容和意思转化为计算机可读的输入,例如按键、二进制编码或者字符序列等。与说话人的识别不同,后者主要是识别和确认发出语音的人并非其中所包含的内容。语音识别的目的就是让机器人听懂人类所说的语言,其中包含了两方面的含义:第一是逐字逐句听懂而不是转化为书面的语言文字。第二是对口述内容所包含的命令或请求加以领会,做出正确回应,而不是仅仅拘泥于所有词汇的正确转换。

语音识别如何提高辨识度

语音的交互是一个认知与辨识的过程,所以绝对不能与语法、语义和用语规范等方面分裂开来。系统会先对原始语音进行处理,再进行特征提取,消除噪声和不同说话人的差异带来的影响,使处理后的信号能够更完整的反映语音的本质特征提取。

智能语音系统的未来

实现人机间自由的语音交互成为未来AI的发展趋势,一项新技术投入市场会伴随着一些兴奋点,但也会有存在一定的改善空间。首先,智能语音市场需要针对特定的人群,特定的场景做适当的改变。目前来看人机交互在实时性、准确性等方面还需要提高。其次,语音输入的内容会涉及各种各样的专业知识,智能语音系统在了解人类语言表面意思的基础上,更进一步识别更深层次的含义,所以智能语音系统的知识图谱也是很大的挑战,对输入输出、编译代码都要做很高的要求,才能让人机交互达到一个爆发点。

语音识别技术借助高速发展的信息网,可实现计算机的全球联网和信息资源共享,因此被广泛应用的系统有:语音输入和控制系统、电销机器人、智能电话查询系统、智能家电以及玩具等方面。智能电话机器人在房地产、金融、电商、保险、汽车等一切有电话销售行业的形式,正在潜移默化的影响和改变着我们的生活。

因此语言识别功能是一项非常有潜力的技术。可以设想,我们平时生活中很多地方都可以用到它,大大的方便了我们的生活和工作,比如智能手机、智能冰箱及空调、电动门、汽车导航、机器人控制、医疗实施、军事设备等。

可以毫不夸张地说,21世纪将会是语音识别广泛流行和普及的时代,而语音识别产品和设备也会以其独特的魅力引领时代潮流,成为时代追逐的宠儿和焦点。欢迎和博主一起技术交流相互学习。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
12天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
108 48
|
15天前
|
人工智能 数据挖掘 数据库
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
|
16天前
|
人工智能 数据库 决策智能
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
本文为阿里云瑶池数据库「拥抱Data+AI」系列连载第1篇,聚焦电商行业痛点,探讨如何利用数据与AI技术及分析方法论,为电商注入新活力与效能。文中详细介绍了阿里云Data+AI解决方案,涵盖Zero-ETL、实时在线分析、混合负载资源隔离、长周期数据归档等关键技术,帮助企业应对数据在线重刷、实时分析、成本优化等挑战,实现智能化转型。
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
|
5天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
9天前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
41 9
|
6天前
|
机器学习/深度学习 人工智能 安全
AI与旅游业:旅行规划的智能助手
在数字化浪潮中,人工智能(AI)正重塑旅游业。本文探讨了AI如何通过个性化推荐、智能预测与预警、语音交互与虚拟助手、增强现实体验及可持续发展,提升旅行规划的效率、安全性和趣味性,推动旅游业创新与变革。
|
8天前
|
人工智能 自然语言处理 关系型数据库
从数据到智能,一站式带你了解 Data+AI 精选解决方案、特惠权益
从 Data+AI 精选解决方案、特惠权益等,一站式带你了解阿里云瑶池数据库经典的AI产品服务与实践。
|
9天前
|
人工智能 安全 搜索推荐
AI与能源管理:智能电网的未来
本文探讨了AI与智能电网的融合及其对能源管理的深远影响。智能电网利用先进的信息、通信和AI技术,实现电力的自主、智能化、高效管理。AI在精准预测电力需求、实时监测与故障诊断、智能能源调度、个性化能源服务和优化可再生能源利用等方面发挥关键作用,推动能源管理的高效、智能和可持续发展。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI与法律行业:智能法律咨询
在科技飞速发展的今天,人工智能(AI)正逐渐渗透到法律行业,特别是在智能法律咨询领域。本文探讨了AI在智能法律咨询中的应用现状、优势及挑战,并展望了其未来发展前景。AI技术通过大数据、自然语言处理等手段,提供高效、便捷、低成本且个性化的法律服务,但同时也面临数据隐私、法律伦理等问题。未来,AI将在技术升级、政策推动和融合创新中,为用户提供更加优质、便捷的法律服务。
|
12天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在金融领域的应用:智能投资顾问
【10月更文挑战第31天】随着AI技术的快速发展,智能投资顾问在金融领域的应用越来越广泛。本文介绍了智能投资顾问的定义、工作原理、优势及未来发展趋势,探讨了其在个人财富管理、养老金管理、机构风险管理及量化交易中的典型应用,并分析了面临的挑战与机遇。智能投资顾问以其高效、低成本、个性化和全天候服务的特点,正逐步改变传统投资管理方式。