深度学习原理篇 第十章:Pix2Seq

简介: 简要介绍pix2seq的原理和代码实现。

参考教程:
https://arxiv.org/pdf/2109.10852.pdf
https://github.com/google-research/pix2seq
https://zhuanlan.zhihu.com/p/421851551
https://github.com/moein-shariatnia/Pix2Seq
感觉自己理解的还是不太到位,主要是decoder相关的部分没有实践上使用过,纯理论不足以支撑完全弄清decoder的作用。

背景

作者提出了一个用于目标检测的新框架Pix2Seq,把目标检测问题作为一个基于像素输入的语言建模任务。目标描述(包围框,类别)等以离散token的形式表示。

作者认为,现在有很多先进的目标检测方法在不同的领域取得显著的成就,但是任务的独特性和复杂性,让这些方法没有办法很好地泛化到更大范围的任务上,这也是这些方法的局限性。它们从先验知识中学习,但是又受限于先验知识。

pix2seq框架基于这种一种直觉:如果一个神经网络知道目标物体的种类和位置,那么我们只需要教会它怎么表达出来。通过学习“描述”对象,模型可以学习将“语言”建立在像素观测的基础上,从而获得有用的对象表示。给一种图像作为输入,pix2seq会产生一系列和目标描述相关的的离散token。

把目标检测任务当作一个基于像素输入的语言建模来作,可以使用比较generic and simple的模型框架和损失函数,而不是那些专门为目标检测任务设计的复杂组件。并且框架也可以轻松地被应用到别的领域上,它能为多种类型的视觉任务提供一个语言接口。

为了使用pix2seq解决目标检测任务,作者主要做了以下工作:

  1. 提出了一个量化序列化机制:将包围框和类别等信息转为离散的token序列。
  2. 利用encoder-decoder架构接受像素输入并生成目标序列。
  3. 目标函数使用基于像素输入和先验token的token的极大似然。
  4. 使用augmentation方法组合先验知识。

方法

image.png

作者提出的pix2seq框架有四个主要的部分:

  • Image Augmentation: 使用数据增强的方法来扩充训练数据,比如说随机缩放和裁剪。
  • Sequence construction&augmentation: 把目标检测任务中常用的包围框和类别标注转换为一组离散的token。
  • Architecture: 使用encoder-decoder模型,encoder获取图像像素输入,decoder生成目标序列。
  • objective/loss function: 模型训练的目的是最大化基于图像输入的token的log似然函数。

【有一说一看完之后还是有点云里雾里的,比如说序列增强的部分,没太明白inference阶段的那个做法】

从目标描述中构造序列

在常见的目标检测数据集中,一个图像中可能有多个目标,用一组包围框和类别标签表示。在pix2seq中则是要转成离散的序列表示。

在包围框和类别两种标签中,类别标签是天然地表示成一个离散的token的形式的。而包围框通常是表示成两个角点(左上角和右下角)或者它的中心点与宽高。要把连续数字离散化后来表示它的坐标。具体来说,一个目标被表示成拥有五个离散token的序列:$[y_{min},x_{min},y_{max},x_{max},c]$。其中每个连续坐标被均匀地离散为介于$[1,n_{bins}]$之间。所用的token共享一个词库,所以词库的大小等于bins的数量加class的数量。

对于一个600x600的图像,就是用600bins,比一般常用的语言模型的词库要小很多。下图显示了不同的bins带来的效果差异。使用的bins比较大的时候,小图像显示出很高的精度。
image.png

在得到每个目标的离散化的表达后,还需要把多个目标描述进行序列化的组合,来形成一个给定图像的整体描述。在目标检测中,目标的顺序对检测任务并没有什么影响,所以作者使用了随即顺序。作者也探究了别的排序方法,但是认为在网络能力足够的情况下,不同的顺序方法表现将一样好。

因为不同的图像会有不同个数的目标,生成的序列也会有不同的长度,使用一个EOS token来表示序列的结束。

不同顺序的序列表示如下:下图中使用的bins大小为1000,所以类别标签是从1000开始计数的。最后的0表示的是EOS token。
image.png

在论文附录中给出了比较简单的量化和反量化的代码。

  1. Quantization of coordinates

     def quantize(x, bins=1000):
         return int(x*(bins-1))
    

    这里的x是normalized的坐标,代表它相对原始图像边长的大小,范围在[0,1]之间。

  2. Dequantization of discrete coordinates

     def dequantize(x,bins=1000):
         return float(x)/(bins-1)
    

    就是将上面的结果复原的方法,两者可以说互为反函数。

architecture, objective and inference

architecture

使用一个encoder-decoder的结构。encoder用来把输入的图像编码成一个隐层表达,常用的可以是卷积网络或者transformer或者它们的组合。生成的部分,也就是decoder的部分,作者选用了transformer的decoder,它在语言模型中被广泛使用。每次可以基于先前生成的token和编码图像表达生成一个新的token。

objective

和一般的语言模型类似,pix2seq被训练来在给定图像和之前的token的情况下预测下一个token,使用极大似然损失:
$$ maximize\sum_{j=1}^Lw_j logP(\hat{y_j}|x,y_{1:j-1}) $$

inference

在推理阶段,作者从模型似然中进行token的采样。要么使用极大似然对应的token,要么使用别的随机采样的方法。作者发现使用nucleus采样会比使用最大似然采样取得更高的recall。等EOS序列被生成时,序列就会终止,接下来它会被直接用来转换成目标描述。

增强序列,整合先验

EOS token的存在允许模型去决定什么时候终止生成,但实际上我们发现模型总是在还没有预测完所有物体后就停止了。作者认为可能有以下两个原因:

  1. annoatation noise: 标注不完整,没有包括到所有的目标。
  2. uncertainty in recognizing or localizing: 可能模型的输出不是按照每个物体的置信度,因此对一些难检测的目标的置信度比较低,就会直接输出EOS,后面置信度高的目标就没机会输出了。

输出不完全的问题对精确度的影响不是很大,但是会带来比较大的召回问题。为了提升召回率,一个方案是延迟EOStoken的采样,但这样也会带来重复采样和噪声,从而造成精确率的降低,所以难点在于precision-recall的折衷。

另一个方案是序列增强,可以在task中引入一些先验知识。这一步有点像word2vec的做法,具体来说就是本来我们的token里面全是正样本,这样的话数据很不均衡,所以人为的在里面添加一些noise,帮助我们的模型学习真假标注,这样在延迟EOS到时候,模型可以有效过滤掉那些额外生成的噪声和重复采样。
image.png

具体来说,就是对输入序列进行增强,除了真实的token外(图中蓝色的部分),还使用了合成的噪声token(图中黄色的部分)。同时,作者也对目标序列进行修改,让模型可以学习识别噪声token。

altered sequence construction

作者生成噪声来增强输入学习,使用以下两步:

  1. 在已有的ground-truth上增加噪声,比如随机缩放或平移。
  2. 生成一些完全随机的框(和随机的类别标签)。

一些噪声可能会独立或者和ground-truth有重叠,分别代表了noisy prediction和duplicated predictions。这些生成的假token会被放到原始输入的末尾,组成一个新的输入。

对于目标序列,noise的token会被设置为”nois”类别,对应的坐标被设置为“n/a"。损失权重被设为0。

altered inference

使用序列增强后,我们能够进行EOS token的延迟,从而在不损失精度的情况下提升召回率。因此,我们让这个模型尽可能预测一个最大的长度,产生固定数量的目标。当从生成的序列中提取包围框和类别的时候,会用极大似然的真实标签取代noise标签。

代码实现

官方源码使用的是tensorflow,因为我不太熟悉tensorflow,所以这一部分是参考的基于pytorch的非官方版本。这个版本比较简单,并且readme写的也很清晰。

首先我们回顾一下Pix2Seq的步骤:

  1. 序列增强,构建序列。
  2. encoder编码输入图像,生成隐层序列。
  3. decoder解码,获得目标token。也就是离散化的目标检测结果。
  4. 处理结果。

tokenize

首先来看一下如何构建输入序列。代码作者给出了一个比较详细的流程介绍。

  1. 使用特殊的token标记序列的开始和结尾。(BOS和EOS)
  2. 量化连续坐标值。
  3. 编码label。
  4. 随机排序,作为最终的序列。

具体的实现参考:https://github.com/moein-shariatnia/Pix2Seq/blob/master/tokenizer.py

我们可以分开来看。

对单一坐标的处理

对坐标量化和反量化的部分和论文附录中的简单做法一致。

具体来说,加入输入图像大小是224,那么你的bins至少要有224个,才能实现在每个像素上的划分。所以一般为了预测的准确,bins数量不能太少。

在代码解释中给了个例子,假如现在有一个bbox,坐标为 (12.2, 35.8, 68.1, 120.5),首先你要进行normalize将它归一化到0到1之间,如何直接执行int(x*(self.num_bins-1)),在bins数量是224的情况下,这样得到的结果是(12, 35, 67, 119)。因为int本身是向下取整的。这种情况下我们会丢失一些信息,假如这个时候你使用稍微大一点的bins,丢失的信息就会相对少一些。

但是也不能太大,因为bins达到一定程度后不会再有performance上的提升,反而很冗余。而且大bins也会带来更多的计算量。

def quantize(self, x: np.array):
    """
    x is a real number in [0, 1]
    """
    return (x * (self.num_bins - 1)).astype('int')

def dequantize(self, x: np.array):
    """
    x is an integer between [0, num_bins-1]
    """
    return x.astype('float32') / (self.num_bins - 1)

对一组输入的处理

我们分开来看序列的encode和decode。

encode

在encode部分,你输入的是labels和bboxes两个list。

  1. 对于label,label本身就是离散化的,你只需要将它更新成新label即可,举例来说就是加上bins的数量。
  2. 对于bboxes,你要先进去归一化,然后离散化。
  3. 将label和bboxes组合在一起,并且在开头加上BOS,结尾加上EOS。

这部分实现也比较简单。

对于label:

labels = np.array(labels)
labels += self.num_bins  # label直接加上num_bins,形成新label
labels = labels.astype('int')[:self.max_len]

对于bboxes:

bboxes[:, 0] = bboxes[:, 0] / self.width
bboxes[:, 2] = bboxes[:, 2] / self.width
bboxes[:, 1] = bboxes[:, 1] / self.height
bboxes[:, 3] = bboxes[:, 3] / self.height

bboxes = self.quantize(bboxes)[:self.max_len]

对于序列:

 tokenized = [self.BOS_code] # 加上bos
 for label, bbox in zip(labels, bboxes):
      tokens = list(bbox)
      tokens.append(label)
      tokenized.extend(list(map(int, tokens))) # label和bbox组合在一起
  tokenized.append(self.EOS_code) # 加上eos

decode

在decode的部分,你输入的是token。需要使用encode的反向操作来获得结果。
对于序列:

tokens = tokens[1:-1] # 去掉bos和eos
assert len(tokens) % 5 == 0, "invalid tokens"

labels = []
bboxes = []
for i in range(4, len(tokens)+1, 5):
    label = tokens[i] # 拿出label
    bbox = tokens[i-4: i] # label前的四个数是bbox
    labels.append(int(label))
    bboxes.append([int(item) for item in bbox])

对于label:

labels = np.array(labels) - self.num_bins

对于bboxes:

bboxes = np.array(bboxes)
bboxes = self.dequantize(bboxes) # 反量化

bboxes[:, 0] = bboxes[:, 0] * self.width
bboxes[:, 2] = bboxes[:, 2] * self.width
bboxes[:, 1] = bboxes[:, 1] * self.height
bboxes[:, 3] = bboxes[:, 3] * self.height # 反归一化

model

模型部分由一个encoder和decoder组成。

encoder

encoder的作用是以图像为输入,并输出对应的隐层编码,或者话说就是图像的表达,图像的特征。
在这个版本的代码中,代码作中使用的是DeiT。相对VIT来说,DeiT在训练速度和数据利用上比较有优势。作者认为使用基于VIT类似的backbone,它会把图像分成不同的patch并像处理单词一样,对于每个patch都能获得独特的编码,可以把这些都送给decoder,这样就类似于在做一个语言翻译的工作。

作者直接使用timm中的DeiT作为encoder。

class Encoder(nn.Module):
    def __init__(self, model_name='deit3_small_patch16_384_in21ft1k', pretrained=False, out_dim=256):
        super().__init__()
        self.model = timm.create_model(
            model_name, num_classes=0, global_pool='', pretrained=pretrained)
        self.bottleneck = nn.AdaptiveAvgPool1d(out_dim)

    def forward(self, x):
        features = self.model(x)
        return self.bottleneck(features[:, 1:])

DeiT的输出理论上包括了一个cls token和所有的patch token,这个cls token作者没有使用,只使用了输出的patch token。

decoder

decoder的部分以输入图像的patch embbeding作为输入,并进行bboxes和label的预测。代码作者在这里直接使用了pytorch中transformerdecoder。

这里的做法真的很nlp,感觉自己也不是那么理解。具体来说首先还是构建一个词库,这个词库的大小是 n_bins+classes+3,这个3代表的是三个类型的标记符号。词库的维度在这里是256。这里做的主要是个词预测的工作。对于输入的图像特征和上一个token,比如说xmin,那么你要预测的下一个token是ymin。

init()

初始化的部分主要有以下几个重要部件:

  1. 词向量。对我们的输入序列进行编码。
  2. decoder。
  3. 位置编码。代码作者对encoder和decoder都准备了一个位置编码。
def __init__(self, vocab_size, encoder_length, dim, num_heads, num_layers):
        super().__init__()
        self.dim = dim

        self.embedding = nn.Embedding(vocab_size, dim)  # 这个是我们的词库,对每个像素位置都构建了一个embedding
        self.decoder_pos_embed = nn.Parameter(torch.randn(1, CFG.max_len-1, dim) * .02) # 位置编码
        self.decoder_pos_drop = nn.Dropout(p=0.05)

        decoder_layer = nn.TransformerDecoderLayer(d_model=dim, nhead=num_heads)
        self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) # decoder
        self.output = nn.Linear(dim, vocab_size) 

        self.encoder_pos_embed = nn.Parameter(torch.randn(1, encoder_length, dim) * .02) # encoder位置编码
        self.encoder_pos_drop = nn.Dropout(p=0.05)

        self.init_weights()

forward()

forward()部分直接理解起来就是,我们的输入有两种。
encoder_out,即encoder部分输出的图像的feature,它的大小是(N,L,D),N代表batchsize,L代表patch size,D代表token的维度。
tgt是我们的target token,更具体的说就是已经经过tokenize的目标序列。

理论上来说tgt的token长度和encoder_out的L应该是不一致的。对这个地方表示疑惑?????也有可能L只是个标记,没有别的意义。

首先对于输入的token,这里进行了一个mask。因为对于一个token,它在预测的时候只能看到前面的token,所以在它后面的token相对它都要被mask掉。

我们的token是被当作单词来做的,那么对于单词,我们要获得它的词向量。对于大小为(N,L)的输入,我们会获得(N,L,D)大小的输出的词向量。并加上了位置编码。encoder的输出也加上了位置编码。

将这些结果一起送到decoder中去。

decoder的输出大小应该和输入大小保持一致,也就是(N,L,D)。

最后接一个全连接层,将输出的最后一个维度映射为词库大小,因为在做输出的时候是用交叉熵做的,其实相对于对N*L个东西进行了词库大小维度的分类,每个东西找到对应的类别,也就是bins的index。

def forward(self, encoder_out, tgt):
       """
       encoder_out: shape(N, L, D)
       tgt: shape(N, L)
       """

       tgt_mask, tgt_padding_mask = create_mask(tgt) # 获得mask
       tgt_embedding = self.embedding(tgt)
       tgt_embedding = self.decoder_pos_drop(
           tgt_embedding + self.decoder_pos_embed
       )

       encoder_out = self.encoder_pos_drop(
           encoder_out + self.encoder_pos_embed
       )

       encoder_out = encoder_out.transpose(0, 1)
       tgt_embedding = tgt_embedding.transpose(0, 1)

       preds = self.decoder(memory=encoder_out, 
                            tgt=tgt_embedding,
                            tgt_mask=tgt_mask, 
                            tgt_key_padding_mask=tgt_padding_mask)

       preds = preds.transpose(0, 1)
       return self.output(preds)
相关文章
|
5月前
|
机器学习/深度学习 数据采集 自然语言处理
OneFlow深度学习框原理、用法、案例和注意事项
OneFlow深度学习框原理、用法、案例和注意事项
63 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络的核心原理
本文将深入浅出地介绍深度学习的基本概念,包括神经网络的结构、工作原理以及训练过程。我们将从最初的感知机模型出发,逐步深入到现代复杂的深度网络架构,并探讨如何通过反向传播算法优化网络权重。文章旨在为初学者提供一个清晰的深度学习入门指南,同时为有经验的研究者回顾和巩固基础知识。
73 11
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应神经网络:原理与应用
【8月更文挑战第14天】在深度学习领域,自适应神经网络作为一种新兴技术,正逐渐改变我们处理数据和解决问题的方式。这种网络通过动态调整其结构和参数来适应输入数据的分布和特征,从而在无需人工干预的情况下实现最优性能。本文将深入探讨自适应神经网络的工作原理、关键技术及其在多个领域的实际应用,旨在为读者提供一个全面的视角,理解这一技术如何推动深度学习向更高效、更智能的方向发展。
|
5月前
|
机器学习/深度学习 算法 TensorFlow
深度学习基础:神经网络原理与构建
**摘要:** 本文介绍了深度学习中的神经网络基础,包括神经元模型、前向传播和反向传播。通过TensorFlow的Keras API,展示了如何构建并训练一个简单的神经网络,以对鸢尾花数据集进行分类。从数据预处理到模型构建、训练和评估,文章详细阐述了深度学习的基本流程,为读者提供了一个深度学习入门的起点。虽然深度学习领域广阔,涉及更多复杂技术和网络结构,但本文为后续学习奠定了基础。
115 5
|
30天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
83 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络背后的原理与实践
【9月更文挑战第29天】本文将带你深入理解深度学习的核心概念,从基础理论到实际应用,逐步揭示其神秘面纱。我们将探讨神经网络的工作原理,并通过实际代码示例,展示如何构建和训练一个简单的深度学习模型。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供宝贵的知识和技能。
39 2
|
2月前
|
机器学习/深度学习 人工智能 监控
深度学习中的图像识别:原理与实践
【9月更文挑战第21天】本文将深入浅出地探讨深度学习在图像识别领域的应用。我们将从基础的神经网络概念出发,逐步深入到卷积神经网络(CNN)的工作机制,最后通过一个实际的代码示例来展示如何利用深度学习进行图像识别。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供宝贵的知识和技能。
74 1
|
2月前
|
机器学习/深度学习 自然语言处理 自动驾驶
深度学习的奥秘:从基本原理到实际应用
在这篇文章中,我们将探索深度学习的神秘世界。首先,我们将介绍深度学习的基本概念和原理,然后深入探讨其在不同领域的应用。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。让我们一起揭开深度学习的面纱,探索其无限可能!
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
利用深度学习进行图像识别的基本原理与实践
【8月更文挑战第27天】在这篇文章中,我们将探索图像识别技术的核心原理,并借助深度学习框架实现一个基本的图像识别模型。通过简洁的代码示例和直观的解释,我们旨在向读者展示如何从零开始构建自己的图像识别系统,以及这一过程中可能遇到的挑战和解决方案。无论你是AI领域的初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和指导。
|
3月前
|
机器学习/深度学习 算法 PyTorch
【深度学习】深度学习基本概念、工作原理及实际应用案例
深度学习是一种机器学习方法,它试图模拟人脑中的神经网络结构,以解决复杂的问题。深度学习的核心在于构建多层非线性处理单元(即神经元)的网络结构,这些网络可以从原始数据中自动提取特征并进行学习。
550 1