Python爬虫基础:使用Scrapy库初步探索

简介: Scrapy是Python中最流行的网页爬虫框架之一,强大且功能丰富。通过Scrapy,你可以快速创建一个爬虫,高效地抓取和处理网络数据。在这篇文章中,我们将介绍如何使用Scrapy构建一个基础的爬虫。

Scrapy是Python中最流行的网页爬虫框架之一,强大且功能丰富。通过Scrapy,你可以快速创建一个爬虫,高效地抓取和处理网络数据。在这篇文章中,我们将介绍如何使用Scrapy构建一个基础的爬虫。

一、Scrapy简介及安装

Scrapy是一个用Python实现的开源网页爬虫框架,主要用于网页数据抓取和分析。它提供了所有的基础功能,包括解析HTML(或其他格式的数据)、处理HTTP请求、处理cookies和session、多线程抓取等等,还提供了多种类型的爬虫模型,适用于不同的需求。

安装Scrapy非常简单,只需要使用pip安装即可:

pip install Scrapy

二、创建一个Scrapy项目

Scrapy使用一个单独的项目空间来组织每一个爬虫。你可以使用Scrapy的命令行工具来创建一个新的项目:

scrapy startproject tutorial

这会创建一个名为"tutorial"的Scrapy项目,项目结构如下:

tutorial/
    scrapy.cfg            # 项目的配置文件
    tutorial/             # 项目的Python模块
        __init__.py
        items.py          # 项目的数据模型文件
        middlewares.py    # 项目的中间件文件
        pipelines.py      # 项目的数据处理管道文件
        settings.py       # 项目的设置文件
        spiders/          # 存放爬虫代码的目录
            __init__.py

三、编写一个简单的爬虫

在Scrapy中,爬虫是一类定义了如何爬取某个网站(或一组网站)的类,包括如何进行网页爬取(即初始URL)、如何跟踪链接、如何从网页的内容中提取数据等等。

下面我们将创建一个简单的Scrapy爬虫,用于爬取quotes.toscrape.com网站的引用内容。首先,我们需要在spiders目录下创建一个新的Python文件quotes_spider.py:

import scrapy

class QuotesSpider(scrapy.Spider):
    name = "quotes"

    def start_requests(self):
        urls = [
            'http://quotes.toscrape.com/page/1/',
        ]
        for url in urls:
            yield scrapy.Request(url=url, callback=self.parse)

    def parse(self, response):
        page = response.url.split("/")[-2]
        filename = f'quotes-{page}.html'
        with open(filename, 'wb') as f:
            f.write(response.body)
        self.log(f'Saved file {filename}')

在这个代码中,我们定义了一个名为QuotesSpider的Scrapy爬虫。爬虫首先会请求URLs列表中的每个URL,然后对每个响应进行处理,将响应的内容保存到一个HTML文件中。

四、运行Scrapy爬虫

创建好爬虫后,你可以使用Scrapy的命令行工具来运行爬虫:

scrapy crawl quotes

当你运行这个命令,Scrapy将会找到名为"quotes"的爬虫,并开始爬取,然后将爬取的内容保存到文件中。

通过这篇文章,你应该对Scrapy有了基本的了解,并能够创建和运行一个简单的Scrapy爬虫。在下一篇文章中,我们将更深入地探讨Scrapy的功能,包括如何提取数据,如何使用Scrapy的数据管道,如何处理登录和cookies等等。

相关文章
|
20天前
|
数据采集 存储 XML
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。
|
10天前
|
XML JSON 数据库
Python的标准库
Python的标准库
125 77
|
5天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
11天前
|
XML JSON 数据库
Python的标准库
Python的标准库
39 11
|
24天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
97 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
11天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
53 8
|
10天前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
17天前
|
数据采集 JSON 开发者
Python爬虫京东商品详情数据接口
京东商品详情数据接口(JD.item_get)提供商品标题、价格、品牌、规格、图片等详细信息,适用于电商数据分析、竞品分析等。开发者需先注册账号、创建应用并申请接口权限,使用时需遵循相关规则,注意数据更新频率和错误处理。示例代码展示了如何通过 Python 调用此接口并处理返回的 JSON 数据。
|
22天前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href='example.com']` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
19天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
29 4