集成学习:机器学习模型如何“博采众长”

简介: 集成学习:机器学习模型如何“博采众长”

前置概念

偏差

指模型的预测值与真实值之间的差异,它反映了模型的拟合能力。

方差

指模型在不同的训练集上产生的预测结果的差异,它反映了模型的稳定性。

方差和偏差对预测结果所造成的影响

在机器学习中,我们通常希望模型的偏差和方差都能够尽可能地小,从而达到更好的泛化能力。但是,偏差和方差的平衡是一个非常复杂的问题,很难通过简单的调参来解决。因此,在实际应用中,我们需要综合考虑模型的鲁棒性、准确性和泛化能力等多个指标,来评估模型的性能和可靠性。

拟合

模型过拟合指的是机器学习模型在训练集上表现很好,但在测试集或新数据上表现很差的情况。过拟合通常是由于模型过于复杂,或者训练数据过少、噪声过多等原因导致的。

欠拟合

模型欠拟合指的是机器学习模型在训练集和测试集上表现都不够好的情况。

决策树

决策树是一种基于树结构的分类算法,它通过构造一棵树来模拟决策过程。在决策树中,每个节点代表一个属性或特征,每个分支代表一个可能的取值,而每个叶子节点代表一个分类结果。决策树的工作原理是通过对数据集进行递归分割,将数据集划分为不同的子集,直到每个子集都属于同一类别或达到预定的停止条件。在分类时,将待分类样本从根节点开始,按照属性值依次向下遍历,直到到达叶子节点,即可得到分类结果。

鲁棒性

指模型对于输入数据中的噪声、异常值、缺失值等干扰因素的抵抗能力。在机器学习中,我们通常希望模型能够对于不同的输入数据都能够产生稳定和一致的输出结果,我们可以通过数据清洗、特征选择、模型调参等方法来提高模型的鲁棒性,从而提高模型的性能和准确性。

鲁棒性

集成学习

核心思想是训练出多个模型并将这些模型进行组合。根据分类器的训练方式和组合预测的方法。目标就是,减少机器学习模型的方差和偏差,找到机器学习模型在欠拟合和过拟合之间的最佳平衡点。集成学习中两种最重要的方法就是:降低偏差的 Boosting 和降低方差的Bagging。

Boosting 方法

有三种很受欢迎的算法,分别是 AdaBoost、GBDT 和 XGBoost

AdaBoost

它通过持续优化一个基模型,将新模型整合到原有模型中,并对样本进行加权,以减小模型预测误差。

GBDT(梯度提升决策树)

将梯度下降和 Boosting 方法结合的算法。它采用决策树模型,并定义一个损失函数,通过梯度下降来优化模型。

XGBoost(极端梯度提升)

对 GBDT 进一步优化的算法。它也采用决策树模型,并定义一个损失函数。与 GBDT 不同的是,XGBoost 利用泰勒展开式将损失函数展开到二阶,并利用二阶导数信息加快训练集的收敛速度

Bagging方法

是一种降低模型方差的集成学习方法,它通过随机抽取数据的方式,构建多个基模型,并将它们的结果进行集成,从而得到一个泛化能力更强的模型。Bagging方法有三种常见的算法:

决策树的Bagging

这种方法是基于决策树的Bagging,也称为树的聚合(Bagging of Tree)。它的基本思想是通过随机抽取数据和特征,构建多棵决策树,并将它们的结果进行集成。决策树具有显著的低偏差、高方差的特点,因此通过Bagging方法可以降低模型方差,提高模型的泛化能力。

随机森林算法

随机森林算法是一种基于决策树的Bagging方法,它在决策树的基础上引入了随机特征选择。具体来说,随机森林算法在每个节点上随机选择一部分特征进行划分,从而降低模型方差,提高模型的泛化能力。

极端随机森林算法

极端随机森林算法是一种基于决策树的Bagging方法,它在随机森林算法的基础上进一步引入了随机特征和随机阈值选择。具体来说,极端随机森林算法在每个节点上随机选择一部分特征和一个随机阈值进行划分,从而进一步降低模型方差,提高模型的泛化能力。

具体应用

“易速鲜花”运营部门提出了两个裂变思路。

方案一是选择一批热销商品,让老用户邀请朋友扫码下载 App 并成功注册,朋友越多,折扣越大。我们把这个方案命名为“疯狂打折”,它走的是友情牌。

方案二是找到一个朋友一起购买,第二件商品就可以免费赠送,这叫“买一送一”。 具体来说,方案一是让老用户邀请朋友扫码下载 App 并成功注册,朋友越多,折扣越大。

输入的数据集

我们今天的目标就是根据这个数据集,来判断一个特定用户在特定的裂变促销之下,是否会转化。

预测代码如下:

import pandas as pd #导入Pandas
from sklearn.metrics import f1_score
from sklearn.tree import DecisionTreeClassifier
df_fission = pd.read_csv('易速鲜花裂变转化.csv') #载入数据
df_fission.head() #显示数据
import matplotlib.pyplot as plt #导入pyplot模块
import seaborn as sns #导入Seaborn
fig = sns.countplot('是否转化', data=df_fission) #创建柱状计数图
fig.set_ylabel("数目") #Y轴标题
plt.show() #显示图像
# 把二元类别文本数字化
df_fission['性别'].replace("女",0,inplace = True)
df_fission['性别'].replace("男",1,inplace=True)
# 显示数字类别
print("Gender unique values",df_fission['性别'].unique())
# 把多元类别转换成多个二元哑变量,然后贴回原始数据集
df_fission = pd.get_dummies(df_fission, drop_first = True)
df_fission # 显示数据集
X = df_fission.drop(['用户码','是否转化'], axis = 1) # 构建特征集
y = df_fission.是否转化.values # 构建标签集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2)
from sklearn.preprocessing import MinMaxScaler #导入归一化缩放器
scaler = MinMaxScaler() #创建归一化缩放器
X_train = scaler.fit_transform(X_train) #拟合并转换训练集数据
X_test = scaler.transform(X_test) #转换测试集数据
# 一、测试准确率是指在测试集上分类器正确分类的样本数占总样本数的比例。它是分类器性能的一个重要指标,但是它不能很好地反映分类器在不同类别上的表现。
#
#二、 F1分数是精确率和召回率的调和平均数,它综合了分类器的精确率和召回率,是一个更全面的分类器性能指标。
# 精确率是指分类器正确预测为正例的样本数占预测为正例的样本数的比例,召回率是指分类器正确预测为正例的样本数占实际为正例的样本数的比例。F
# 1分数越高,表示分类器的性能越好。
#1.1 AdaBoost算法
from sklearn.ensemble import AdaBoostClassifier # 导入AdaBoost 模型
dt = DecisionTreeClassifier() # 选择决策树分类器作为AdaBoost 的基准算法
ada = AdaBoostClassifier(dt) # AdaBoost 模型
ada.fit(X_train, y_train) # 拟合模型
y_pred = ada.predict(X_test) # 进行预测
print("AdaBoost 测试准确率: {:.2f}%".format(ada.score(X_test, y_test)*100))
print("AdaBoost 测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
# 1.2 GBDT算法
from sklearn.ensemble import GradientBoostingClassifier # 导入梯度提升模型
gb = GradientBoostingClassifier() # 梯度提升模型
gb.fit(X_train, y_train) # 拟合模型
y_pred = gb.predict(X_test) # 进行预测
print(" 梯度提升测试准确率: {:.2f}%".format(gb.score(X_test, y_test)*100))
print(" 梯度提升测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
#1.3 XGBoost算法
from xgboost import XGBClassifier # 导入XGB 模型
xgb = XGBClassifier() # XGB 模型
xgb.fit(X_train, y_train) # 拟合模型
y_pred = xgb.predict(X_test) # 进行预测
print("XGB 测试准确率: {:.2f}%".format(xgb.score(X_test, y_test)*100))
print("XGB 测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
#2.1 决策树的Bagging
from sklearn.ensemble import BaggingClassifier # 导入Bagging 分类器
from sklearn.tree import DecisionTreeClassifier # 导入决策树分类器
from sklearn.metrics import (f1_score, confusion_matrix) # 导入评估指标
dt = BaggingClassifier(DecisionTreeClassifier()) # 只使用一棵决策树
dt.fit(X_train, y_train) # 拟合模型
y_pred = dt.predict(X_test) # 进行预测
print(" 决策树测试准确率: {:.2f}%".format(dt.score(X_test, y_test)*100))
print(" 决策树测试F1 分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
bdt = BaggingClassifier(DecisionTreeClassifier()) # 树的Bagging
bdt.fit(X_train, y_train) # 拟合模型
y_pred = bdt.predict(X_test) # 进行预测
print(" 决策树Bagging 测试准确率: {:.2f}%".format(bdt.score(X_test, y_test)*100))
print(" 决策树Bagging 测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
#2.2 随机森林算法
from sklearn.ensemble import RandomForestClassifier # 导入随机森林模型
rf = RandomForestClassifier() # 随机森林模型
rf.fit(X_train, y_train) # 拟合模型
y_pred = rf.predict(X_test) # 进行预测
print(" 随机森林测试准确率: {:.2f}%".format(rf.score(X_test, y_test)*100))
print(" 随机森林测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
#2.3 极端随机森林算法
from sklearn.ensemble import ExtraTreesClassifier # 导入极端随机森林模型
ext = ExtraTreesClassifier() # 极端随机森林模型
ext.fit(X_train, y_train) # 拟合模型
y_pred = ext.predict(X_test) # 进行预测
print(" 极端随机森林测试准确率: {:.2f}%".format(ext.score(X_test, y_test)*100))
print(" 极端随机森林测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))

图中可以看出,对于这个问题,XGBoost、随机森林和极端随机森林,都是比较好的选择。


目录
相关文章
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
62 3
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
21天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
70 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
30天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
48 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
63 8
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
60 6
|
2月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
2月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。