Elasticsearch之IK分词器配置

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch之IK分词器配置

分词概念

分词(Word segmentation)是将一串书面语言分成其组成词的问题。中文分词指的是使用计算机自动对中文文本进行词语的切分,即像英文那样使得中文句子中的词之间有空格以标识。中文分词被认为是中文自然语言处理中的一个最基本的环节。

  • 为什么需要将搜索结果展示的粒度最小为词,而非字?
  • 因为单字一般情况下载关联度比较低,可能会推荐很多不相关的数据,从而让用户感觉搜索体验不好。
  • 举例:我搜索“南山区的“,我想搜索结果中,只展示命中“南山区”的数据,而不要展示命中“的”的数据

IK分词器配置文件讲解以及自定义词库实战

1、ik配置文件

ik配置文件地址:es/plugins/ik/config目录

IKAnalyzer.cfg.xml:用来配置自定义词库

main.dic:ik原生内置的中文词库,总共有27万多条,只要是这些单词,都会被分在一起

quantifier.dic:放了一些单位相关的词

suffix.dic:放了一些后缀

surname.dic:中国的姓氏

stopword.dic:英文停用词

ik原生最重要的两个配置文件

main.dic:包含了原生的中文词语,会按照这个里面的词语去分词

stopword.dic:包含了英文的停用词

停用词,stopword

a the and at but

一般,像停用词,会在分词的时候,直接被干掉,不会建立在倒排索引中

2、自定义词库

(1)自己建立词库:每年都会涌现一些特殊的流行词,网红,蓝瘦香菇,喊麦,鬼畜,一般不会在ik的原生词典里

自己补充自己的最新的词语,到ik的词库里面去

IKAnalyzer.cfg.xml:ext_dict,custom/mydict.dic

补充自己的词语,然后需要重启es,才能生效

(2)自己建立停用词库:比如了,的,啥,么,我们可能并不想去建立索引,让人家搜索

custom/ext_stopword.dic,已经有了常用的中文停用词,可以补充自己的停用词,然后重启es

修改IK分词器源码来基于mysql热更新词库

每次都是在es的扩展词典中,手动添加新词语,很坑

(1)每次添加完,都要重启es才能生效,非常麻烦

(2)es是分布式的,可能有数百个节点,你不能每次都一个一个节点上面去修改

es不停机,直接我们在外部某个地方添加新的词语,es中立即热加载到这些新词语

热更新的方案

(1)修改ik分词器源码,然后手动支持从mysql中每隔一定时间,自动加载新的词库

(2)基于ik分词器原生支持的热更新方案,部署一个web服务器,提供一个http接口,通过modified和tag两个http响应头,来提供词语的热更新

用第一种方案,第二种,ik git社区官方都不建议采用,觉得不太稳定

1、下载源码

https://github.com/medcl/elasticsearch-analysis-ik/tree/v5.2.0

ik分词器,是个标准的java maven工程,直接导入eclipse就可以看到源码

2、修改源码

Dictionary类,169行:Dictionary单例类的初始化方法,在这里需要创建一个我们自定义的线程,并且启动它

HotDictReloadThread类:就是死循环,不断调用Dictionary.getSingleton().reLoadMainDict(),去重新加载词典

Dictionary类,389行:this.loadMySQLExtDict();

Dictionary类,683行:this.loadMySQLStopwordDict();

3、mvn package打包代码

target\releases\elasticsearch-analysis-ik-5.2.0.zip

4、解压缩ik压缩包

将mysql驱动jar,放入ik的目录下

5、修改jdbc相关配置

6、重启es

观察日志,日志中就会显示我们打印的那些东西,比如加载了什么配置,加载了什么词语,什么停用词

7、在mysql中添加词库与停用词

8、分词实验,验证热更新生效


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
2月前
|
存储 缓存 固态存储
优化Elasticsearch 硬件配置
优化Elasticsearch 硬件配置
104 5
|
3月前
|
自然语言处理 大数据 应用服务中间件
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
80 5
|
3月前
|
自然语言处理 Java 网络架构
elasticsearch学习三:elasticsearch-ik分词器的自定义配置 分词内容
这篇文章是关于如何自定义Elasticsearch的ik分词器配置以满足特定的中文分词需求。
171 0
elasticsearch学习三:elasticsearch-ik分词器的自定义配置 分词内容
|
2月前
|
缓存 监控 安全
优化Elasticsearch 集群配置
优化Elasticsearch 集群配置
76 4
|
2月前
|
监控 负载均衡 安全
Elasticsearch集群配置优化
Elasticsearch集群配置优化
36 1
|
2月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
60 5
|
2月前
|
测试技术 API 开发工具
ElasticSearch的IK分词器
ElasticSearch的IK分词器
62 7
|
3月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
266 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
3月前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
95 1
|
4月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo