给32位系统装8g内存条能用吗?为什么?

简介: 给32位系统装8g内存条能用吗?为什么?


关于32位和64位,这个概念一直让人比较懵。

在买电脑的时候,我们看到过32位和64位CPU

下软件的时候,我们也看到过32位或64位的软件

就连装虚拟机的时候,我们也看过32位和64位的系统

在写代码的时候,我们的数值,也可以定义为int32或者int64

我们当然很清楚,装软件的时候,一般64位的系统就选64位的软件,肯定不出错,但是这又是为什么呢?既然CPU,软件,操作系统,数值大小都有32位和64位,他们之间就可以随意组合成各种问题,比如32位的系统能装64位的软件吗?32位的系统能计算int64的数值吗?他们之间到底有什么关系?这篇文章会尝试解释清楚。


从代码到到可执行文件

我们从熟悉的场景开始说起,比方说,我们写代码的时候,会在代码编辑器里写入。

// test.c
#include <stdio.h>
int main()
{
         int i,j;
         i = 3;
         j = 2;
         return i + j;
}

但这个代码是给人看的,机器可看不懂,于是这段代码,还会经过被编译器转成汇编码

汇编码就是我们大学的时候学的头秃的这种

// gcc -S test.c
    pushq   %rbp
    .cfi_def_cfa_offset 16
    .cfi_offset %rbp, -16
    movq    %rsp, %rbp
    .cfi_def_cfa_register %rbp
    movl    $0, -4(%rbp)
    movl    $3, -8(%rbp)
    movl    $2, -12(%rbp)
    movl    -8(%rbp), %eax
    addl    -12(%rbp), %eax
    popq    %rbp
    retq

大家也别去看上面的内容,没必要。

而汇编,总归还是有各种movl,pushq这些符号,虽然确实不好看,但说到底还是给人看的,而机器cpu要的,说到底还是要0101这样的二进制编码,所以还需要使用汇编器将汇编转成二进制的机器码。我们可以看到下面内容分为3列,左边是指令地址, 右边是汇编码内容,中间的就是指令机器码,是16进制,可以转成二进制01串,这就是机器cpu能认识的内容了。

// objdump -d test
0000000000001125 <main>:
    1125:    55                      push   %rbp
    1126:    48 89 e5                mov    %rsp,%rbp
    1129:    c7 45 fc 03 00 00 00    movl   $0x3,-0x4(%rbp)
    1130:    c7 45 f8 02 00 00 00    movl   $0x2,-0x8(%rbp)
    1137:    8b 55 fc                mov    -0x4(%rbp),%edx
    113a:    8b 45 f8                mov    -0x8(%rbp),%eax
    113d:    01 d0                   add    %edx,%eax
    113f:    5d                      pop    %rbp
    1140:    c3                      retq   
    1141:    66 2e 0f 1f 84 00 00    nopw   %cs:0x0(%rax,%rax,1)
    1148:    00 00 00 
    114b:    0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)


从高级语言到机器码

而机器码,最后会放在我们编译生成的可执行文件里。

也就是说我们平时写的代码,最后会变成一堆01机器码,放在可执行文件里,躺在磁盘上。


从可执行文件到进程

一旦我们执行以下命令

./可执行文件名

这个可执行文件就会加载进内存中,成为一个进程,运行起来。

可执行文件里的机器码也会被加载到内存中,它就像是一张列满todo list的清单,而CPU就对照着这张清单,一行行的执行上面的机器码。从效果上来看,进程就动起来了。

对CPU来说,它执行到某个特定的编码数值,就会执行特定的操作。比如计算2+3,其实就是通过总线把数据2和3从内存里读入,然后放到寄存器上,再用加法器相加这两个数值并将结果放入到寄存器里,最后将这个数值回写到内存中,以此循环往复,一行行执行机器码直到退出。

进程内存与CPU的执行逻辑


CPU位数的含义

上面这个流程里,最重要的几个关键词,分别是CPU寄存器,总线,内存

CPU的寄存器,说白了就是个存放数值的小盒子,盒子的大小,叫位宽。32位CPU能放入最大2^32的数值。64位就是最大2^64的值。这里的32位位宽的CPU就是我们常说的32位CPU,同理64位CPU也是一样。

CPU跟内存之间,是用总线来进行信号传输的,总线可以分为数据总线,控制总线,地址总线。功能如其名,举个例子说明下他们的作用吧。在一个进程的运行过程中,CPU会根据进程的机器码一行行执行操作。

比如现在有一行是将A地址的数据与B地址的数据相加,那么CPU就会通过控制总线,发送信号给内存这个设备,告诉它,现在CPU要通过地址总线在内存中找到A数据的地址,然后取得A数据的值,假设是100,那么这个100,就会通过数据总线回传到CPU的某个寄存器中。B也一样,假设B=200,放到另一个寄存器中,此时A和B相加后,结果是300,然后控制CPU通过地址总线找到返回的参数地址,再把数据结果通过数据总线传回内存中。这一存一取,CPU都是通过控制总线对内存发出指令的。

三类总线

总线,也可以理解为有个宽度,比如宽度是32位,那么一次可以传32个0或1的信号,那么这个宽度能表达的数值范围就是0到2^32这么多。

32位CPU的总线宽度一般是32位,因为刚刚上面提到了,CPU可以利用地址总线在内存中进行寻址操作,那么现在这根地址总线,最大能寻址的范围,也就到2^32,其实就是4G。

64位CPU,按理说总线宽度是64位,但实际上是48位(也有看到说是40位或46位的,没关系,你知道它很大就行了),所以寻址范围能到2^48次方,也就是256T。


系统和软件的位数的含义

上面提到了32位CPU和64位CPU的内存寻址范围,那么相应的操作系统,和软件(其实操作系统也能说是软件),也应该按CPU所能支持的范围去构建自己的寻址范围。

比方说下面这个图,在操作系统上运行一个用户态进程,会分为用户态和内核态,并设定一定的内存布局。操作系统和软件都需要以这个内存布局为基础运行程序。比如32位,内核态分配了1个G,用户态分配了3G,这种时候,你总不能将程序的运行内存边界设定在大于10G的地方。所以,系统和软件的位数,可以理解为,这个系统或软件内存寻址的范围位数。

32和64位的内存差异

一般情况下,由于现在我们的CPU架构在设计上都是完全向前兼容的,别说32位了,16位的都还兼容着,因此64位的CPU是能装上32位操作系统的。

同理,64位的操作系统是兼容32位的软件的,所以32位软件能装在64位系统上。

但反过来,因为32位操作系统只支持4g的内存,而64位的软件在编译的时候就设定自己的内存边界不止4个G,并且64位的CPU指令集内容比32位的要多,所以32位操作系统是肯定不能运行64位软件的。

同理,32位CPU也不能装64位的操作系统的。


程序数值int32和int64的含义

这个我们平时写代码接触的最多,比较好理解了。int32也就是用4个字节,32位的内存去存储数据,int64也就是用8个字节,64位去存数据。这个数值就是刚刚CPU运行流程中放在内存里的数据。


那么问题又来了。


32位的CPU能进行int64位的数值计算吗?

先说结论,。但比起64位的CPU,性能会慢一些

如果说我用的是64位的CPU,那么我在计算两个int64的数值相加时,我就能将数据通过64位的总线,一次性存入到64位的寄存器,并在进行计算后返回到内存中。整个过程一步到位,一气呵成。

但如果我现在用的是32位的CPU,那就憋屈一点了,我虽然在代码里放了个int64的数值,但实际上CPU的寄存器根本放不下这么大的数据,因此最简单的方法是,将int64的数值,拆成前后两半,现在两个int64相加,就变成了4个int32的数值相加,并且后半部分加好了之后,拿到进位,才能去计算前面的部分,这里光是执行的指令数就比64位的CPU要多。所以理论上,会更慢些。


系统位数会限制内存吗?

上面提到了CPU位数,系统位数,软件位数,以及数值位数之间的区别与联系。

现在,我们回到标题里提到的问题。


32位CPU和系统插8g内存条,能用吗?

系统能正常工作,但一般用不到8G,因为32位系统的总线寻址能力为2的32次方,也就是4G,哪怕装了8G的内存,真正能被用到的其实只有4g,多少有点浪费。

注意上面提到的是一般,为什么这么说,因为这里有例外,32位系统里,有些是可以支持超过4G内存的,比如Windows Server 2003就能最大支持64G的内存,它通过使用 PAE (Intel Physical Address Extension)技术向程序提供更多的物理内存,PAE本质上是通过分页管理的方式将32位的总线寻址能力增加到36位。因此理论上寻址能力达到2的36次方,也就是64G。

PAE能让32位系统获得大于4G的内存

至于实现细节大家也不用关心,现在用到这玩意的机器也该淘汰的差不多了,而且都是windows server,注意Windows Server 2003 名字里带个server,是用来做服务器的,我们一般也用不到,知道这件事,除了能帮助我们更好的装x外,就没什么作用了。

所以,你当32位系统最大只能用到4G内存,那也没毛病。


64位CPU装32位操作系统,再插上8g的内存条,寻址能力还是4G吗

上面提到32位CPU就算插上8G内存条,寻址能力也还是4G,那如果说我现在换用64位的CPU,但装了个32位的操作系统,这时候插入8G内存条,寻址能力能超过4G吗?

寻址能力,除了受到cpu的限制外,还受到操作系统的限制,如果操作系统就是按着32位的指令和寻址范围(4G)来编译的话,那么它就会缺少64位系统该有的指令,它在运行软件的时候就不能做到超过这个限制,因此寻址能力还会是4G。


最后留下一个问题吧。

上面提到,我们平时写的代码(也就是C,go,java这些),先转成汇编,再转成机器码。最后CPU执行的是机器码,那么问题来了。

为什么我们平时写的代码不直接转成机器码,而要先转成汇编,这是不是多此一举?


总结

  • CPU位数主要指的是寄存器的位宽,
  • 32位CPU只能装32位的系统和软件,且能计算int64,int32的数值。内存寻址范围是4G。
  • 64位CPU,同时兼容32位和64位的系统和软件,并且进行int64数值计算的时候,性能比32位CPU更好,内存寻址范围可以达到256T。
  • 32位CPU和操作系统,插入8G的内存,会有点浪费,因为总线寻址范围比较有限,它只能用上4G不到的内存。
  • 64位CPU,如果装上32位的操作系统,就算插上8G的内存,效果也还是只能用上4G不到的内存。


最后

刚工作的时候一直觉得int32,有21个亿,这么大的数值肯定够用了吧,结果现实好几次打脸。

以前做游戏的时候,血量一开始是定义为int32,游戏设定是可以通过充钱,提升角色的属性,还能提升血量上限,谁也没想到,老板们通过氪金,硬是把血量给打到了int32最大值。于是策划提了个一句话需求:"血量要支持到int64大小",这是我见过最简单的策划案,但也让人加班加的最凶。

那是我第一次感受到了钞能力。


这篇文章老早就想写了,但涉及的知识点有点多,一直很头疼,怎么样才能用最简单的方式把他们表述清楚,于是想着从大家最熟悉的场景开始说起。希望能给大家带来价值。

如果文章对你有帮助,欢迎…..

算了。


别说了,一起在知识的海洋里呛水吧
目录
相关文章
|
23天前
|
算法 程序员
深入理解操作系统内存管理:分页系统的优势与挑战
【4月更文挑战第7天】 在现代操作系统中,内存管理是一项至关重要的任务,它确保了计算机能够高效、安全地运行各种程序。分页系统作为内存管理的一种技术,通过将物理内存分割成固定大小的单元——页面,为每个运行的程序提供了一种独立且连续的内存地址空间。该技术不仅简化了内存分配,还允许更高效的内存使用和保护。本文探讨了分页系统的核心原理,优势以及面临的挑战,旨在为读者揭示其在操作系统设计中的重要性。
|
2月前
|
监控 NoSQL Linux
深入Linux内存泄漏排查:Valgrind与系统工具的联合应用
深入Linux内存泄漏排查:Valgrind与系统工具的联合应用
93 0
|
17小时前
|
机器学习/深度学习 自动驾驶 安全
深入理解操作系统内存管理:策略与实现基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第30天】 在现代计算机系统中,操作系统的内存管理是确保系统高效、稳定运行的关键组成部分。本文将深入探讨操作系统中内存管理的多种策略及其实现机制,包括但不限于分页、分段和段页式结合等技术。我们将剖析内存分配的原理,讨论虚拟内存技术的实现以及它如何提供更大的地址空间并允许内存的交换。同时,我们还会涉及内存保护机制,它们是如何防止程序访问未授权的内存区域。最后,文中将对现代操作系统如Linux和Windows中的内存管理实践进行比较分析,以期给读者提供全面而深入的理解和参考。 【4月更文挑战第30天】 随着人工智能技术的飞速发展,深度学习已经
|
23天前
|
Prometheus 监控 Cloud Native
【Linux】查看系统内存命令(详细讲解)
【Linux】查看系统内存命令(详细讲解)
|
2月前
|
存储 缓存 监控
Linux 系统 内存通用指标以及查询方式
Linux 系统 内存通用指标以及查询方式
19 0
|
2月前
|
存储 缓存 Shell
【Shell 命令集合 系统管理 】⭐⭐⭐Linux 显示系统内存的使用情况 free命令 使用指南
【Shell 命令集合 系统管理 】⭐⭐⭐Linux 显示系统内存的使用情况 free命令 使用指南
29 0
|
2月前
|
缓存 算法 安全
深入理解操作系统内存管理:分页系统的优势与挑战
【2月更文挑战第30天】 在现代操作系统中,内存管理是核心功能之一,它负责将有限的物理内存资源分配给多个并发运行的进程。分页系统作为内存管理的一种流行技术,其通过虚拟到物理地址的映射提供了程序的逻辑地址空间,并允许更高效的内存分配和保护。本文旨在探讨分页系统的关键优势,包括其如何提升内存利用率、实现内存保护以及支持多任务处理。同时,我们也将分析分页机制带来的挑战,诸如页面置换算法的效率问题、页表管理和TLB(Translation Lookaside Buffer)的维护等。
|
2月前
|
存储 算法
深入理解操作系统内存管理:分页系统的优势与挑战
【2月更文挑战第29天】 在现代操作系统中,内存管理是核心功能之一,它负责有效地分配、跟踪和回收内存资源。分页系统作为一种内存管理技术,已经成为大多数操作系统的标准配置。本文将探讨分页系统的原理、优势以及面临的挑战。通过对分页机制的深入分析,我们旨在提供一个全面的视角,以帮助读者更好地理解这一关键技术如何影响操作系统的性能和稳定性。
|
2月前
|
存储 缓存 Linux
嵌入式Linux系统中内存分配详解
嵌入式Linux系统中内存分配详解
34 0
|
2月前
|
程序员
嵌入式系统中如何正确使用动态内存?
嵌入式系统中如何正确使用动态内存?
21 0

相关课程

更多