给32位系统装8g内存条能用吗?为什么?

简介: 给32位系统装8g内存条能用吗?为什么?


关于32位和64位,这个概念一直让人比较懵。

在买电脑的时候,我们看到过32位和64位CPU

下软件的时候,我们也看到过32位或64位的软件

就连装虚拟机的时候,我们也看过32位和64位的系统

在写代码的时候,我们的数值,也可以定义为int32或者int64

我们当然很清楚,装软件的时候,一般64位的系统就选64位的软件,肯定不出错,但是这又是为什么呢?既然CPU,软件,操作系统,数值大小都有32位和64位,他们之间就可以随意组合成各种问题,比如32位的系统能装64位的软件吗?32位的系统能计算int64的数值吗?他们之间到底有什么关系?这篇文章会尝试解释清楚。


从代码到到可执行文件

我们从熟悉的场景开始说起,比方说,我们写代码的时候,会在代码编辑器里写入。

// test.c
#include <stdio.h>
int main()
{
         int i,j;
         i = 3;
         j = 2;
         return i + j;
}

但这个代码是给人看的,机器可看不懂,于是这段代码,还会经过被编译器转成汇编码

汇编码就是我们大学的时候学的头秃的这种

// gcc -S test.c
    pushq   %rbp
    .cfi_def_cfa_offset 16
    .cfi_offset %rbp, -16
    movq    %rsp, %rbp
    .cfi_def_cfa_register %rbp
    movl    $0, -4(%rbp)
    movl    $3, -8(%rbp)
    movl    $2, -12(%rbp)
    movl    -8(%rbp), %eax
    addl    -12(%rbp), %eax
    popq    %rbp
    retq

大家也别去看上面的内容,没必要。

而汇编,总归还是有各种movl,pushq这些符号,虽然确实不好看,但说到底还是给人看的,而机器cpu要的,说到底还是要0101这样的二进制编码,所以还需要使用汇编器将汇编转成二进制的机器码。我们可以看到下面内容分为3列,左边是指令地址, 右边是汇编码内容,中间的就是指令机器码,是16进制,可以转成二进制01串,这就是机器cpu能认识的内容了。

// objdump -d test
0000000000001125 <main>:
    1125:    55                      push   %rbp
    1126:    48 89 e5                mov    %rsp,%rbp
    1129:    c7 45 fc 03 00 00 00    movl   $0x3,-0x4(%rbp)
    1130:    c7 45 f8 02 00 00 00    movl   $0x2,-0x8(%rbp)
    1137:    8b 55 fc                mov    -0x4(%rbp),%edx
    113a:    8b 45 f8                mov    -0x8(%rbp),%eax
    113d:    01 d0                   add    %edx,%eax
    113f:    5d                      pop    %rbp
    1140:    c3                      retq   
    1141:    66 2e 0f 1f 84 00 00    nopw   %cs:0x0(%rax,%rax,1)
    1148:    00 00 00 
    114b:    0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)


从高级语言到机器码

而机器码,最后会放在我们编译生成的可执行文件里。

也就是说我们平时写的代码,最后会变成一堆01机器码,放在可执行文件里,躺在磁盘上。


从可执行文件到进程

一旦我们执行以下命令

./可执行文件名

这个可执行文件就会加载进内存中,成为一个进程,运行起来。

可执行文件里的机器码也会被加载到内存中,它就像是一张列满todo list的清单,而CPU就对照着这张清单,一行行的执行上面的机器码。从效果上来看,进程就动起来了。

对CPU来说,它执行到某个特定的编码数值,就会执行特定的操作。比如计算2+3,其实就是通过总线把数据2和3从内存里读入,然后放到寄存器上,再用加法器相加这两个数值并将结果放入到寄存器里,最后将这个数值回写到内存中,以此循环往复,一行行执行机器码直到退出。

进程内存与CPU的执行逻辑


CPU位数的含义

上面这个流程里,最重要的几个关键词,分别是CPU寄存器,总线,内存

CPU的寄存器,说白了就是个存放数值的小盒子,盒子的大小,叫位宽。32位CPU能放入最大2^32的数值。64位就是最大2^64的值。这里的32位位宽的CPU就是我们常说的32位CPU,同理64位CPU也是一样。

CPU跟内存之间,是用总线来进行信号传输的,总线可以分为数据总线,控制总线,地址总线。功能如其名,举个例子说明下他们的作用吧。在一个进程的运行过程中,CPU会根据进程的机器码一行行执行操作。

比如现在有一行是将A地址的数据与B地址的数据相加,那么CPU就会通过控制总线,发送信号给内存这个设备,告诉它,现在CPU要通过地址总线在内存中找到A数据的地址,然后取得A数据的值,假设是100,那么这个100,就会通过数据总线回传到CPU的某个寄存器中。B也一样,假设B=200,放到另一个寄存器中,此时A和B相加后,结果是300,然后控制CPU通过地址总线找到返回的参数地址,再把数据结果通过数据总线传回内存中。这一存一取,CPU都是通过控制总线对内存发出指令的。

三类总线

总线,也可以理解为有个宽度,比如宽度是32位,那么一次可以传32个0或1的信号,那么这个宽度能表达的数值范围就是0到2^32这么多。

32位CPU的总线宽度一般是32位,因为刚刚上面提到了,CPU可以利用地址总线在内存中进行寻址操作,那么现在这根地址总线,最大能寻址的范围,也就到2^32,其实就是4G。

64位CPU,按理说总线宽度是64位,但实际上是48位(也有看到说是40位或46位的,没关系,你知道它很大就行了),所以寻址范围能到2^48次方,也就是256T。


系统和软件的位数的含义

上面提到了32位CPU和64位CPU的内存寻址范围,那么相应的操作系统,和软件(其实操作系统也能说是软件),也应该按CPU所能支持的范围去构建自己的寻址范围。

比方说下面这个图,在操作系统上运行一个用户态进程,会分为用户态和内核态,并设定一定的内存布局。操作系统和软件都需要以这个内存布局为基础运行程序。比如32位,内核态分配了1个G,用户态分配了3G,这种时候,你总不能将程序的运行内存边界设定在大于10G的地方。所以,系统和软件的位数,可以理解为,这个系统或软件内存寻址的范围位数。

32和64位的内存差异

一般情况下,由于现在我们的CPU架构在设计上都是完全向前兼容的,别说32位了,16位的都还兼容着,因此64位的CPU是能装上32位操作系统的。

同理,64位的操作系统是兼容32位的软件的,所以32位软件能装在64位系统上。

但反过来,因为32位操作系统只支持4g的内存,而64位的软件在编译的时候就设定自己的内存边界不止4个G,并且64位的CPU指令集内容比32位的要多,所以32位操作系统是肯定不能运行64位软件的。

同理,32位CPU也不能装64位的操作系统的。


程序数值int32和int64的含义

这个我们平时写代码接触的最多,比较好理解了。int32也就是用4个字节,32位的内存去存储数据,int64也就是用8个字节,64位去存数据。这个数值就是刚刚CPU运行流程中放在内存里的数据。


那么问题又来了。


32位的CPU能进行int64位的数值计算吗?

先说结论,。但比起64位的CPU,性能会慢一些

如果说我用的是64位的CPU,那么我在计算两个int64的数值相加时,我就能将数据通过64位的总线,一次性存入到64位的寄存器,并在进行计算后返回到内存中。整个过程一步到位,一气呵成。

但如果我现在用的是32位的CPU,那就憋屈一点了,我虽然在代码里放了个int64的数值,但实际上CPU的寄存器根本放不下这么大的数据,因此最简单的方法是,将int64的数值,拆成前后两半,现在两个int64相加,就变成了4个int32的数值相加,并且后半部分加好了之后,拿到进位,才能去计算前面的部分,这里光是执行的指令数就比64位的CPU要多。所以理论上,会更慢些。


系统位数会限制内存吗?

上面提到了CPU位数,系统位数,软件位数,以及数值位数之间的区别与联系。

现在,我们回到标题里提到的问题。


32位CPU和系统插8g内存条,能用吗?

系统能正常工作,但一般用不到8G,因为32位系统的总线寻址能力为2的32次方,也就是4G,哪怕装了8G的内存,真正能被用到的其实只有4g,多少有点浪费。

注意上面提到的是一般,为什么这么说,因为这里有例外,32位系统里,有些是可以支持超过4G内存的,比如Windows Server 2003就能最大支持64G的内存,它通过使用 PAE (Intel Physical Address Extension)技术向程序提供更多的物理内存,PAE本质上是通过分页管理的方式将32位的总线寻址能力增加到36位。因此理论上寻址能力达到2的36次方,也就是64G。

PAE能让32位系统获得大于4G的内存

至于实现细节大家也不用关心,现在用到这玩意的机器也该淘汰的差不多了,而且都是windows server,注意Windows Server 2003 名字里带个server,是用来做服务器的,我们一般也用不到,知道这件事,除了能帮助我们更好的装x外,就没什么作用了。

所以,你当32位系统最大只能用到4G内存,那也没毛病。


64位CPU装32位操作系统,再插上8g的内存条,寻址能力还是4G吗

上面提到32位CPU就算插上8G内存条,寻址能力也还是4G,那如果说我现在换用64位的CPU,但装了个32位的操作系统,这时候插入8G内存条,寻址能力能超过4G吗?

寻址能力,除了受到cpu的限制外,还受到操作系统的限制,如果操作系统就是按着32位的指令和寻址范围(4G)来编译的话,那么它就会缺少64位系统该有的指令,它在运行软件的时候就不能做到超过这个限制,因此寻址能力还会是4G。


最后留下一个问题吧。

上面提到,我们平时写的代码(也就是C,go,java这些),先转成汇编,再转成机器码。最后CPU执行的是机器码,那么问题来了。

为什么我们平时写的代码不直接转成机器码,而要先转成汇编,这是不是多此一举?


总结

  • CPU位数主要指的是寄存器的位宽,
  • 32位CPU只能装32位的系统和软件,且能计算int64,int32的数值。内存寻址范围是4G。
  • 64位CPU,同时兼容32位和64位的系统和软件,并且进行int64数值计算的时候,性能比32位CPU更好,内存寻址范围可以达到256T。
  • 32位CPU和操作系统,插入8G的内存,会有点浪费,因为总线寻址范围比较有限,它只能用上4G不到的内存。
  • 64位CPU,如果装上32位的操作系统,就算插上8G的内存,效果也还是只能用上4G不到的内存。


最后

刚工作的时候一直觉得int32,有21个亿,这么大的数值肯定够用了吧,结果现实好几次打脸。

以前做游戏的时候,血量一开始是定义为int32,游戏设定是可以通过充钱,提升角色的属性,还能提升血量上限,谁也没想到,老板们通过氪金,硬是把血量给打到了int32最大值。于是策划提了个一句话需求:"血量要支持到int64大小",这是我见过最简单的策划案,但也让人加班加的最凶。

那是我第一次感受到了钞能力。


这篇文章老早就想写了,但涉及的知识点有点多,一直很头疼,怎么样才能用最简单的方式把他们表述清楚,于是想着从大家最熟悉的场景开始说起。希望能给大家带来价值。

如果文章对你有帮助,欢迎…..

算了。


别说了,一起在知识的海洋里呛水吧
目录
相关文章
|
1月前
|
缓存 Java Linux
如何解决 Linux 系统中内存使用量耗尽的问题?
如何解决 Linux 系统中内存使用量耗尽的问题?
126 48
|
15天前
|
机器学习/深度学习 人工智能 缓存
【AI系统】推理内存布局
本文介绍了CPU和GPU的基础内存知识,NCHWX内存排布格式,以及MNN推理引擎如何通过数据内存重新排布进行内核优化,特别是针对WinoGrad卷积计算的优化方法,通过NC4HW4数据格式重排,有效利用了SIMD指令集特性,减少了cache miss,提高了计算效率。
35 3
|
18天前
|
监控 Java Android开发
深入探索Android系统的内存管理机制
本文旨在全面解析Android系统的内存管理机制,包括其工作原理、常见问题及其解决方案。通过对Android内存模型的深入分析,本文将帮助开发者更好地理解内存分配、回收以及优化策略,从而提高应用性能和用户体验。
|
19天前
|
机器学习/深度学习 人工智能 算法
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
36 1
|
1月前
|
监控 Java Android开发
深入探讨Android系统的内存管理机制
本文将深入分析Android系统的内存管理机制,包括其内存分配、回收策略以及常见的内存泄漏问题。通过对这些方面的详细讨论,读者可以更好地理解Android系统如何高效地管理内存资源,从而提高应用程序的性能和稳定性。
68 16
|
1月前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?
|
2月前
|
运维 JavaScript Linux
容器内的Nodejs应用如何获取宿主机的基础信息-系统、内存、cpu、启动时间,以及一个df -h的坑
本文介绍了如何在Docker容器内的Node.js应用中获取宿主机的基础信息,包括系统信息、内存使用情况、磁盘空间和启动时间等。核心思路是将宿主机的根目录挂载到容器,但需注意权限和安全问题。文章还提到了使用`df -P`替代`df -h`以获得一致性输出,避免解析错误。
|
28天前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
231 1
|
18天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
26天前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80