【ELM分类】基于海鸥算法优化核极限学习机SOA-KELM实现数据分类附matlab代码

简介: 【ELM分类】基于海鸥算法优化核极限学习机SOA-KELM实现数据分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在机器学习领域,核极限学习机(Kernel Extreme Learning Machine,简称KELM)是一种非常有效的分类算法。它通过随机生成的隐含层神经元的权重和偏置,将输入数据映射到高维特征空间,并使用最小二乘法进行线性分类。然而,传统的KELM算法在处理大规模数据集时会面临一些挑战,例如计算复杂度高和内存消耗大等问题。

为了解决这些问题,研究人员提出了一种基于海鸥算法的优化方法,称为SOA-KELM。海鸥算法是一种模拟鸟群觅食行为的优化算法,它通过模拟鸟群的搜索过程来寻找最优解。在SOA-KELM中,海鸥算法被用于优化KELM的隐含层权重和偏置,以提高分类性能。

SOA-KELM的优化过程可以分为以下几个步骤:

  1. 数据预处理:首先,需要对输入数据进行预处理,例如特征选择、特征缩放等。这可以帮助提取有用的信息,并减少计算复杂度。
  2. 隐含层权重和偏置初始化:随机生成隐含层神经元的权重和偏置,这些参数将用于将输入数据映射到高维特征空间。
  3. 海鸥算法优化:使用海鸥算法来优化隐含层权重和偏置。海鸥算法模拟了鸟群的觅食行为,通过搜索最优解来优化KELM的性能。
  4. 最小二乘法分类:使用最小二乘法对优化后的KELM进行线性分类。最小二乘法是一种常用的回归分析方法,可以通过最小化误差平方和来拟合数据。

通过以上步骤,SOA-KELM能够更好地处理大规模数据集,并提高分类性能。相比传统的KELM算法,它具有以下优势:

  1. 计算效率高:SOA-KELM使用海鸥算法来优化隐含层权重和偏置,减少了计算复杂度,提高了算法的效率。
  2. 内存消耗小:SOA-KELM通过随机生成的隐含层神经元来映射输入数据,避免了存储大量权重和偏置的问题,从而减少了内存消耗。
  3. 分类性能优越:通过海鸥算法的优化,SOA-KELM能够更准确地进行数据分类,提高了分类性能。

总之,基于海鸥算法优化的核极限学习机SOA-KELM是一种非常有效的数据分类算法。它通过海鸥算法的优化,能够更好地处理大规模数据集,并提高分类性能。未来,我们可以进一步研究和应用SOA-KELM算法,以解决更复杂的分类问题。

核心代码

%%% Designed and Developed by Dr. Gaurav Dhiman (http://dhimangaurav.com/) %%%function Pos=init(SearchAgents,dimension,upperbound,lowerbound)Boundary= size(upperbound,2); if Boundary==1    Pos=rand(SearchAgents,dimension).*(upperbound-lowerbound)+lowerbound;endif Boundary>1    for i=1:dimension        ub_i=upperbound(i);        lb_i=lowerbound(i);        Pos(:,i)=rand(SearchAgents,1).*(ub_i-lb_i)+lb_i;    endend

⛄ 运行结果

⛄ 参考文献

[1] 何敏,刘建伟,胡久松.遗传优化核极限学习机的数据分类算法[J].传感器与微系统, 2017, 36(10):3.DOI:10.13873/J.1000-9787(2017)10-0141-03.

[2] 耿银凤.基于极限学习机的脑卒中TCD数据分类研究[D].太原理工大学[2023-08-28].

[3] 刘新建,孙中华.狮群优化核极限学习机的分类算法[J].电子技术应用, 2022(002):048.

[4] 杜帮俊.基于改进粒子群和极限学习机的基因数据分类研究[D].中国计量大学,2019.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计
相关文章
|
4天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
1天前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
2月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
1月前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
1月前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
1月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
16天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
19天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
下一篇
无影云桌面