一次打通FlinkCDC同步Mysql数据

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: FlinkCDC同步Mysql数据

业务痛点

离开了业务谈技术都是耍流氓。我们来聊聊基于业务的痛点,衍生出来的多种数据同步方案。

业务中常见的需要数据同步的场景

1、多个库的表合并到一张表。不同的业务线或者微服务在不同的数据库里开发,但是此时有些报表需要将多个库的类似的数据合并后做查询统计。或者,某些历史原因,类似刚开始的商业模式不清晰,导致一些业务线分分合合。或者某些边缘业务逐步融合到了主业务。早起的数据是分开的,业务运营也是分开,后来又合并成了一个大块业务。

2、某个数据需要写到多个存储中。业务数据需要写入到多个中间件或者存储中,比如业务的数据存储再Mysql的数据中,后来为了方便检索需要写入到ES,或者为了缓存需要写入到Redis,或者是Mysql分表的数据合并写入到Doris中。

3、数据仓库的场景。比如将表里的数据实时写入到DWS数据仓库的宽表中。

4、应急场景。如果不采专用CDC的方案,那么要达到实时查询的效果,只能在BFF层的代码调用多个中心层的查询API,然后再BFF层做各种聚合,运算。这种方式开发效率低下,万一有的中心层没有提供合适的查询API,临时开发的话,会让开发进度不可控。

总之,不管是数据多写、还是多表合并、还是建立数据仓库,都属于数据同步任务。

数据同步为什么需要独立的系统来做

这种任务放在业务代码里做,是不可持续的。你要尽量让业务系统解耦,专注于做业务的事情,这种数据同步的任务应该交给专门的系统来做。如果在业务系统中增加额外的数据同步功能,同时为了提高数据同步的可用性,就需要写许多数据同步的代码和容错的代码(效率问题、并发问题、数据一致性问题、集群问题等等),这会让业务系统不堪重负,到后期业务系统几乎会达到不可维护的地步。

CDC登场

基于以上问题,本场数据同步的主角FlinkCDC就登场了,FlinkCDC是专门为数据同步(同步+计算)而生。通过CDC工具,可以将数据同步任务从业务系统中解耦出来,同时还可以将一份变动的数据,写入到多个存储中。这种方式不但让业务系统解耦,而且可以让数据同步任务更加健壮,方便后续的维护。

CDC原理

CDC是什么

CDC 是变更数据捕获(Change Data Capture)技术的缩写,它可以将源数据库(Source)的增量变动记录,同步到一个或多个数据目的(Sink)。在同步过程中,还可以对数据进行一定的处理,例如过滤、关联、分组、统计等。

目前专业做数据库事件接受和解析的中间件是Debezium,如果是捕获Mysql,还有Canal。

Debezium官方https://debezium.io/

Debezium官方定义:Debezium is an open source distributed platform for change data capture. Start it up, point it at your databases, and your apps can start responding to all of the inserts, updates, and deletes that other apps commit to your databases. Debezium is durable and fast, so your apps can respond quickly and never miss an event, even when things go wrong。翻译过来则是:Debezium 是一个用于变更数据捕获的开源分布式平台。 启动它,将其指向您的数据库,您的应用程序就可以开始响应其他应用程序提交给您的数据库的所有插入、更新和删除操作。 Debezium 耐用且快速,因此即使出现问题,您的应用程序也可以快速响应并且不会错过任何事件。

CDC原理

CDC的原理是,当数据源表发生变动时,会通过附加在表上的触发器或者 binlog 等途径,将操作记录下来。下游可以通过数据库底层的协议,订阅并消费这些事件,然后对数据库变动记录做重放,从而实现同步。这种方式的优点是实时性高,可以精确捕捉上游的各种变动。

FlinkCDC

FlinkCDC是什么

官网地址:[https: //ververica.github.io/flink-cdc-connectors/]
官方定义:This project provides a set of source connectors for Apache Flink® directly ingesting changes coming from different databases using Change Data Capture(CDC)。根据FlinkCDC官方给出的定义,FlinkCDC提供一组源数据的连接器,使用变更数据捕获的方式,直接吸收来自不同数据库的变更数据。

为什么是FlinkCDC

1、FlinkCDC 提供了对 Debezium 连接器的封装和集成,简化了配置和使用的过程,并提供了更高级的 API 和功能,例如数据格式转换、事件时间处理等。Flink CDC 使用 Debezium 连接器作为底层的实现,将其与 Flink 的数据处理能力结合起来。通过配置和使用 Flink CDC,您可以轻松地将数据库中的变化数据流转化为 Flink 的 DataStream 或 Table,并进行实时的数据处理、转换和分析。

2、Flink的DataStream和SQL比较成熟和易用

3、Flink支持状态后端(State Backends),允许存储海量的数据状态

4、Flink有更好的生态,更多的Source和Sink的支持

数据流向对比

数据合并流向:

数据多写流向:

技术方案比较

网上有数据同步的多种技术方案的比较,我只挑选我实践过的2种做个比较,Canal和FlinkCDC。

数据链路对比

通过下图,我们可以看到Canal处理数据的链路比FlinkCDC更长,数据链路一旦变长意味着,出错的可能性更高。

我在实践Canal的过程中,监听到Kafka之后,通过一个Springboot项目的微服务项目去监听Kafka处理业务逻辑,这种负责度更高,内部数据关联啥的也是调用Dubbo API,我不建议你也使用这种方法。当然啦,这是我没遇到Flink之前的方案,嘻嘻。当然还用过更差的方案,定时任务扫描,再写入别的库,哈哈。

变更数据的结构

Mysql单次提交多条数据的时候,Canal拿到的数据是1条数据,FlinkCDC拿到的是多条数据。FlinkCDC的这种方式更便于处理。

canal数据格式:

{"data":[{"id":"G00002","name":"潞城市小蚂蚁家政保洁有限公司","province_id":"32","province":"江苏省","city_id":"3201","city":"南京市","district_id":"320114","district":"雨花台区","address":"科创城23222333444","logo_url":"http://bm-oss.oss-cn-hangzhou.aliyuncs.com/jfe-app3.0/baba/goods/icon_112.png","slogan":"欢迎来到","credit_code":"2343243","master_name":"江鑫","master_idcard":"xxxxxxxxx","power_group_id":"9996","opt_time":"2021-10-19 17:41:57","add_user_id":"132","add_user_name":"测试","add_time":"2020-07-27 13:59:34","email":"123456@qq.com","master_wechat":null,"service_phone":"13232323232","max_shop_num":"5","pay_mode":null,"business_license":"https://guard.bm001.com/kacloud/null/image/MXVSeb7Pv4r1f1346237770562140.jpg","idcard_front":"https://guard.bm001.com/kacloud/null/image/13uty9yyvrlvWb346237808202139.png","idcard_back":"https://guard.bm001.com/kacloud/null/image/5uA7IblI6r1zoW346237778042125.png","cloud_shop_state":"0","expiration_time":null,"version_id":null,"company_type":"0","company_property":"1","main_sell":null,"introduction":null,"contact_name":null,"contact_phone":null,"certification_name":"潞城市小蚂蚁家政保洁有限公司","is_test":null,"login_account":null,"delete_at":"0","self_invitation_code":"IN6501"}],"database":"cloud_test","es":1669010586000,"id":8150,"isDdl":false,"mysqlType":{"id":"varchar(32)","name":"varchar(64)","province_id":"int(6)","province":"varchar(32)","city_id":"int(6)","city":"varchar(32)","district_id":"int(6)","district":"varchar(64)","address":"varchar(128)","logo_url":"varchar(500)","slogan":"varchar(255)","credit_code":"varchar(18)","master_name":"varchar(16)","master_idcard":"varchar(18)","power_group_id":"bigint(20)","opt_time":"datetime","add_user_id":"varchar(32)","add_user_name":"varchar(32)","add_time":"datetime","email":"varchar(255)","master_wechat":"varchar(255)","service_phone":"varchar(32)","max_shop_num":"int(11)","pay_mode":"int(1)","business_license":"varchar(128)","idcard_front":"varchar(128)","idcard_back":"varchar(128)","cloud_shop_state":"int(1)","expiration_time":"datetime","version_id":"bigint(20)","company_type":"tinyint(2)","company_property":"int(2)","main_sell":"varchar(200)","introduction":"varchar(512)","contact_name":"varchar(32)","contact_phone":"varchar(11)","certification_name":"varchar(64)","is_test":"int(1)","login_account":"varchar(50)","delete_at":"bigint(14)","self_invitation_code":"char(6)"},"old":[{"address":"科创城23222333"}],"pkNames":["id"],"sql":"","sqlType":{"id":12,"name":12,"province_id":4,"province":12,"city_id":4,"city":12,"district_id":4,"district":12,"address":12,"logo_url":12,"slogan":12,"credit_code":12,"master_name":12,"master_idcard":12,"power_group_id":-5,"opt_time":93,"add_user_id":12,"add_user_name":12,"add_time":93,"email":12,"master_wechat":12,"service_phone":12,"max_shop_num":4,"pay_mode":4,"business_license":12,"idcard_front":12,"idcard_back":12,"cloud_shop_state":4,"expiration_time":93,"version_id":-5,"company_type":-6,"company_property":4,"main_sell":12,"introduction":12,"contact_name":12,"contact_phone":12,"certification_name":12,"is_test":4,"login_account":12,"delete_at":-5,"self_invitation_code":1},"table":"uc_company","ts":1669010468134,"type":"UPDATE"}

FlinkCDC数据格式:

{"before":{"id":"PF1784570096901248","pay_order_no":null,"out_no":"J1784570080435328","title":"充值办卡","from_user_id":"PG11111","from_account_id":"1286009802396288","user_id":"BO1707796995184000","account_id":"1707895210106496","amount":13400,"profit_state":1,"profit_time":1686758315000,"refund_state":0,"refund_time":null,"add_time":1686758315000,"remark":"充值办卡","acct_circle":"PG11111","user_type":92,"from_user_type":90,"company_id":"PG11111","profit_mode":1,"type":2,"parent_id":null,"oc_profit_id":"1784570096901248","keep_account_from_user_id":null,"keep_account_from_bm_user_id":null,"keep_account_user_id":null,"keep_account_bm_user_id":null,"biz_company_id":"PG11111"},"after":{"id":"PF1784570096901248","pay_order_no":null,"out_no":"J1784570080435328","title":"充值办卡","from_user_id":"PG11111","from_account_id":"1286009802396288","user_id":"BO1707796995184000","account_id":"1707895210106496","amount":13400,"profit_state":1,"profit_time":1686758315000,"refund_state":0,"refund_time":null,"add_time":1686758315000,"remark":"充值办卡1","acct_circle":"PG11111","user_type":92,"from_user_type":90,"company_id":"PG11111","profit_mode":1,"type":2,"parent_id":null,"oc_profit_id":"1784570096901248","keep_account_from_user_id":null,"keep_account_from_bm_user_id":null,"keep_account_user_id":null,"keep_account_bm_user_id":null,"biz_company_id":"PG11111"},"source":{"version":"1.6.4.Final","connector":"mysql","name":"mysql_binlog_source","ts_ms":1686734882000,"snapshot":"false","db":"cloud_test","sequence":null,"table":"acct_profit","server_id":1,"gtid":null,"file":"mysql-bin.000514","pos":650576218,"row":0,"thread":null,"query":null},"op":"u","ts_ms":1686734882689,"transaction":null}

如何使用

FlinkCDC同步数据,有两种方式,一种是FlinkSQL的方式,一种是Flink DataStream和Table API的方式。为了方便管理,这两种方式我都写在代码里。

前置准备

1、准备好Flink集群。FlinkCDC也是以任务的形式提交到Flink集群去执行的。可以按照Flink官网进行下载安装:https://nightlies.apache.org/flink/flink-docs-release-1.15/zh/docs/try-flink/local_installation/

2、开启Mysql的binlog。这一步自行解决。

FlinkSQL方式

为了方便管理,FlinkSQL方式也是用Java代码写

1、创建database

tEnv.executeSql("CREATE DATABASE IF NOT EXISTS cloud_test");
tEnv.executeSql("CREATE DATABASE IF NOT EXISTS league_test");

2、创建source表

注意类型是'connector' = 'mysql-cdc'

tEnv.executeSql("CREATE TABLE league_test.oc_settle_profit (\n" +
        "    id                           STRING,\n" +
        "    show_profit_id               STRING,\n" +
        "    order_no                     STRING,\n" +
        "    from_user_id                 STRING,\n" +
        "    from_user_type               INT,\n" +
        "    user_id                      STRING,\n" +
        "    user_type                    INT,\n" +
        "    rate                         INT,\n" +
        "    amount                       INT,\n" +
        "    type                         INT,\n" +
        "    add_time                     TIMESTAMP,\n" +
        "    state                        INT,\n" +
        "    expect_profit_time           TIMESTAMP,\n" +
        "    profit_time                  TIMESTAMP,\n" +
        "    profit_mode                  INT,\n" +
        "    opt_code                     STRING,\n" +
        "    opt_name                     STRING,\n" +
        "    acct_circle                  STRING,\n" +
        "    process_state                INT,\n" +
        "    parent_id                    STRING,\n" +
        "    keep_account_from_user_id    STRING,\n" +
        "    keep_account_from_bm_user_id STRING,\n" +
        "    keep_account_user_id         STRING,\n" +
        "    keep_account_bm_user_id      STRING,\n" +
        "    biz_type                     INT,\n" +
        "    remark                       STRING,\n" +
        "    contribute_user_id           STRING,\n" +
        "    relation_brand_owner_id      STRING,\n" +
        "    PRIMARY KEY (id) NOT ENFORCED\n" +
        ") WITH (\n" +
        "  'connector' = 'mysql-cdc',\n" +
        "  'hostname' = '10.20.1.11',\n" +
        "  'port' = '3306',\n" +
        "  'username' = 'root',\n" +
        "  'password' = '123456',\n" +
        "  'database-name' = 'league_test',\n" +
        "  'table-name' = 'oc_settle_profit',\n" +
        "  'scan.incremental.snapshot.enabled' = 'false'\n" +
        ")");

3、创建sink表

注意类型是'connector' = 'jdbc'

tEnv.executeSql("CREATE TABLE cloud_test.dws_profit_record_hdj_flink (\n" +
        "    id                      STRING,\n" +
        "    show_profit_id          STRING,\n" +
        "    order_no                STRING,\n" +
        "    from_user_id            STRING,\n" +
        "    from_user_type          INT,\n" +
        "    user_id                 STRING,\n" +
        "    user_type               INT,\n" +
        "    amount                  INT,\n" +
        "    profit_time             TIMESTAMP,\n" +
        "    state                   INT,\n" +
        "    acct_circle             STRING,\n" +
        "    biz_type                INT,\n" +
        "    contribute_user_id      STRING,\n" +
        "    relation_brand_owner_id STRING,\n" +
        "    remark                  STRING,\n" +
        "    add_time                TIMESTAMP,\n" +
        "    PRIMARY KEY (id) NOT ENFORCED\n" +
        ") WITH (\n" +
        "  'connector' = 'jdbc',\n" +
        "  'url' = 'jdbc:mysql://10.20.1.11:3306/cloud_test',\n" +
        "  'username' = 'root',\n" +
        "  'password' = 'root12345',\n" +
        "  'table-name' = 'dws_profit_record_hdj_flink'\n" +
        ")");

4、执行insert。

如果需要多表关联的,可以注册多个'connector' = 'jdbc'的源表,然后这里编写类似insert into select join这样代码

tEnv.executeSql("INSERT INTO cloud_test.dws_profit_record_hdj_flink (id, show_profit_id, order_no, from_user_id, from_user_type, user_id,\n" +
        "                                              user_type, amount, profit_time, state, acct_circle, biz_type,\n" +
        "                                              contribute_user_id, relation_brand_owner_id, remark, add_time)\n" +
        "select f.id,\n" +
        "       f.show_profit_id,\n" +
        "       f.order_no,\n" +
        "       f.from_user_id,\n" +
        "       f.from_user_type,\n" +
        "       f.user_id,\n" +
        "       f.user_type,\n" +
        "       f.amount,\n" +
        "       f.profit_time,\n" +
        "       f.state,\n" +
        "       f.acct_circle,\n" +
        "       f.biz_type,\n" +
        "       f.contribute_user_id,\n" +
        "       f.relation_brand_owner_id,\n" +
        "       f.remark,\n" +
        "       f.add_time\n" +
        "from league_test.oc_settle_profit f\n" +
        "where f.id is not null\n" +
        "  and f.biz_type is not null\n" +
        "  and f.biz_type = 9");

FlinkSQL方式结束,此时只要source表有变动,那么会自动监听到数据,自动插入到新的表中。

DataStream和Table API方式

个人觉得这种方式虽说有些繁琐,但是灵活度更好,可以用Java代码处理很多逻辑,比SQL更灵活些。

1、监听source

MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
                .hostname(MYSQL_HOST)
                .port(MYSQL_PORT)
                .databaseList(SYNC_DB) // set captured database
                .tableList(String.join(",", SYNC_TABLES)) // set captured table
                .username(MYSQL_USER)
                .password(MYSQL_PASSWD)
                .deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
                .build();

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(3);
        env.enableCheckpointing(5000);

        DataStreamSource<String> cdcSource = env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "CDC Source" + LeagueOcSettleProfit2DwsHdjProfitRecordAPI.class.getName());

2、清洗数据(过滤、转换等等)

此处逻辑比较自定义,文中是过滤掉了不相关的表,然后过滤掉了删除数据的log。

过滤掉不相关的表。

private static SingleOutputStreamOperator<String> filterTableData(DataStreamSource<String> source, String table) {
        return source.filter(new FilterFunction<String>() {
            @Override
            public boolean filter(String row) throws Exception {
                try {
                    JSONObject rowJson = JSON.parseObject(row);
                    JSONObject source = rowJson.getJSONObject("source");
                    String tbl = source.getString("table");
                    return table.equals(tbl);
                } catch (Exception ex) {
                    ex.printStackTrace();
                    return false;
                }
            }
        });
    }

过滤掉删除数据的log

private static SingleOutputStreamOperator<String> clean(SingleOutputStreamOperator<String> source) {
        return source.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String row, Collector<String> out) throws Exception {
                try {
                    LOG.info("============================row:{}", row);
                    JSONObject rowJson = JSON.parseObject(row);
                    String op = rowJson.getString("op");
                    //history,insert,update
                    if (Arrays.asList("r", "c", "u").contains(op)) {
                        out.collect(rowJson.getJSONObject("after").toJSONString());
                    } else {
                        LOG.info("filter other op:{}", op);
                    }
                } catch (Exception ex) {
                    LOG.warn("filter other format binlog:{}", row);
                }
            }
        });
    }

处理业务逻辑,过滤掉了部分数据

private static SingleOutputStreamOperator<String> logic(SingleOutputStreamOperator<String> cleanStream) {
        return cleanStream.filter(new FilterFunction<String>() {
            @Override
            public boolean filter(String data) throws Exception {
                try {
                    JSONObject dataJson = JSON.parseObject(data);
                    String id = dataJson.getString("id");
                    Integer bizType = dataJson.getInteger("biz_type");
                    if (StringUtils.isBlank(id) || bizType == null) {
                        return false;
                    }
                    // 只处理上岗卡数据
                    return bizType == 9;
                } catch (Exception ex) {
                    LOG.warn("filter other format binlog:{}", data);
                    return false;
                }
            }
        });
    }

3、创建自定义sink,将数据写出去

private static class CustomDealDataSink extends RichSinkFunction<String> {
        private transient Connection cloudConnection;
        private transient PreparedStatement cloudPreparedStatement;

        private String insertSql = "INSERT INTO dws_profit_record_hdj_flink_api (id, show_profit_id, order_no, from_user_id, from_user_type, user_id,\n" +
                "                                              user_type, amount, profit_time, state, acct_circle, biz_type,\n" +
                "                                              contribute_user_id, relation_brand_owner_id, remark, add_time)\n" +
                "VALUES (?, ?, ?, ?, ?, ?, ?, ?,\n" +
                "        ?, ?, ?, ?, ?, ?, ?, ?)";
        private String deleteSql = "delete from dws_profit_record_hdj_flink_api where id = '%s'";

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            // 在这里初始化 JDBC 连接
            cloudConnection = DriverManager.getConnection("jdbc:mysql://10.20.1.11:3306/cloud_test", "root", "123456");
            cloudPreparedStatement = cloudConnection.prepareStatement(insertSql);
        }

        @Override
        public void invoke(String value, Context context) throws Exception {
            JSONObject dataJson = JSON.parseObject(value);
            String id = dataJson.getString("id");
            String showProfitId = dataJson.getString("show_profit_id");
            String orderNo = dataJson.getString("order_no");
            String fromUserId = dataJson.getString("from_user_id");
            Integer fromUserType = dataJson.getInteger("from_user_type");
            String userId = dataJson.getString("user_id");
            Integer userType = dataJson.getInteger("user_type");
            Integer amount = dataJson.getInteger("amount");
            Timestamp addTime = dataJson.getTimestamp("add_time");
            Integer state = dataJson.getInteger("state");
            Timestamp profitTime = dataJson.getTimestamp("profit_time");
            String acctCircle = dataJson.getString("acct_circle");
            Integer bizType = dataJson.getInteger("biz_type");
            String remark = dataJson.getString("remark");
            String contributeUserId = dataJson.getString("contribute_user_id");
            String relationBrandOwnerId = dataJson.getString("relation_brand_owner_id");

            Timestamp profitTimeTimestamp = Timestamp.valueOf(DateFormatUtils.format(profitTime.getTime(), "yyyy-MM-dd HH:mm:ss", TimeZone.getTimeZone("GMT")));
            Timestamp addTimeTimestamp = Timestamp.valueOf(DateFormatUtils.format(addTime.getTime(), "yyyy-MM-dd HH:mm:ss", TimeZone.getTimeZone("GMT")));

            cloudPreparedStatement.setString(1, id);
            cloudPreparedStatement.setString(2, showProfitId);
            cloudPreparedStatement.setString(3, orderNo);
            cloudPreparedStatement.setString(4, fromUserId);
            cloudPreparedStatement.setInt(5, fromUserType);
            cloudPreparedStatement.setString(6, userId);
            cloudPreparedStatement.setInt(7, userType);
            cloudPreparedStatement.setInt(8, amount);
            cloudPreparedStatement.setTimestamp(9, profitTimeTimestamp);
            cloudPreparedStatement.setInt(10, state);
            cloudPreparedStatement.setString(11, StringUtils.isBlank(acctCircle) ? "PG11111" : acctCircle);
            cloudPreparedStatement.setInt(12, bizType);
            cloudPreparedStatement.setString(13, contributeUserId);
            cloudPreparedStatement.setString(14, relationBrandOwnerId);
            cloudPreparedStatement.setString(15, remark);
            cloudPreparedStatement.setTimestamp(16, addTimeTimestamp);

            cloudPreparedStatement.execute(String.format(deleteSql, id));
            cloudPreparedStatement.execute();
        }

        @Override
        public void close() throws Exception {
            super.close();
            // 在这里关闭 JDBC 连接
            cloudPreparedStatement.close();
            cloudConnection.close();
        }
    }

代码地址

代码里有2个夹子,一个是API方式的,一个是SQL方式的,每种方式了放了2个例子,代码地址如下:https://github.com/yclxiao/flink-cdc-demo.git

如果在实践的过程中碰到问题,可以在这里找到我:http://www.mangod.top/articles/2023/03/15/1678849930601.html

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
12天前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
104 43
|
5天前
|
存储 SQL 关系型数据库
MySQL底层概述—4.InnoDB数据文件
本文介绍了InnoDB表空间文件结构及其组成部分,包括表空间、段、区、页和行。表空间是最高逻辑层,包含多个段;段由若干个区组成,每个区包含64个连续的页,页用于存储多条行记录。文章还详细解析了Page结构,分为通用部分(文件头与文件尾)、数据记录部分和页目录部分。此外,文中探讨了行记录格式,包括四种行格式(Redundant、Compact、Dynamic和Compressed),重点介绍了Compact行记录格式及其溢出机制。最后,文章解释了不同行格式的特点及应用场景,帮助理解InnoDB存储引擎的工作原理。
MySQL底层概述—4.InnoDB数据文件
|
6天前
|
SQL 监控 关系型数据库
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
|
2月前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
186 17
|
2月前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
175 6
|
2月前
|
SQL 关系型数据库 MySQL
mysql分页读取数据重复问题
在服务端开发中,与MySQL数据库进行数据交互时,常因数据量大、网络延迟等因素需分页读取数据。文章介绍了使用`limit`和`offset`参数实现分页的方法,并针对分页过程中可能出现的数据重复问题进行了详细分析,提出了利用时间戳或确保排序规则绝对性等解决方案。
116 1
|
23天前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
10天前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
82 42
|
1天前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
40 25
|
28天前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
220 0

推荐镜像

更多