【物理应用】基于FDM 和_Gauss Seidel 迭代求解器半(渗漏)承压含水层中二维地下水流方程附matlab代码

简介: 【物理应用】基于FDM 和_Gauss Seidel 迭代求解器半(渗漏)承压含水层中二维地下水流方程附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在地球科学和环境工程领域,研究地下水流的方程是非常重要的。地下水流方程可以帮助我们理解地下水的运动和分布,以及对地下水资源的管理和保护提供指导。本文将介绍一种基于有限差分法(FDM)和Gauss Seidel迭代求解器的方法,用于求解半(渗漏)承压含水层中的二维地下水流方程。

地下水流方程描述了地下水在含水层中的流动。它是一个偏微分方程,可以通过数值方法进行求解。在本文中,我们将使用有限差分法(FDM)来离散化方程,将其转化为一个线性代数方程组。然后,我们将使用Gauss Seidel迭代求解器来求解这个方程组。

有限差分法(FDM)是一种常用的数值方法,用于将偏微分方程转化为代数方程。它将求解域划分为离散的网格点,并使用差分近似来近似偏微分方程中的导数。在本文中,我们将使用二维网格来近似地下水流方程中的空间变量。

Gauss Seidel迭代求解器是一种迭代方法,用于求解线性代数方程组。它通过逐个更新未知数的值来逼近方程组的解。在每次迭代中,我们使用当前迭代步骤中已知的未知数值来计算下一个迭代步骤中的未知数值。通过不断迭代,我们可以逐渐逼近方程组的解。

在使用FDM和Gauss Seidel迭代求解器求解地下水流方程时,我们需要考虑一些问题。首先,我们需要选择合适的网格大小和步长来离散化方程。较小的网格大小和步长可以提供更准确的结果,但会增加计算量。其次,我们需要选择适当的迭代次数来达到所需的精度。迭代次数太少可能导致结果不收敛,而迭代次数太多则会增加计算时间。

此外,我们还需要考虑边界条件和初始条件。边界条件描述了地下水流方程在边界上的行为,而初始条件描述了方程在初始时刻的状态。正确选择和设置边界条件和初始条件对于获得准确的结果非常重要。

总之,基于FDM和Gauss Seidel迭代求解器的方法可以有效地求解半(渗漏)承压含水层中的二维地下水流方程。通过离散化方程和逐步逼近解的过程,我们可以获得地下水流的数值解。这种方法在地球科学和环境工程领域具有广泛的应用前景,可以帮助我们更好地理解和管理地下水资源。

⛄ 运行结果

⛄ 参考文献

[1]殷战稳,韩耀飞,王亚东,等.基于Matlab的Gauss-Seidel迭代法电力系统潮流计算[J].河南大学学报:自然科学版, 2012, 42(3):5.DOI:10.3969/j.issn.1003-4978.2012.03.007.

Wang H, Anderson M.P. (1982) Introduction to Groundwater Modeling: Finite Difference and Finite Elements Methods, University of Wisconsin, Madison, Academic Press CARLOS MOLANO webpag : https://sites.google.com/a/hidrogeocol.com.co/carlos_molano/Home

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计





相关文章
|
1月前
|
存储 数据可视化 数据挖掘
使用Matlab绘制简单的二维与三维图形
【10月更文挑战第3天】本文详细介绍了如何在 Matlab 中绘制简单的二维和三维图形,包括曲线图、柱状图、散点图、网格图、表面图、等高线图、多边形填充图、切片图及矢量场等。文章提供了丰富的代码示例,如使用 `plot`、`bar`、`scatter`、`plot3`、`mesh`、`surf`、`contour` 等函数绘制不同类型图形的方法,并介绍了 `rotate3d`、`comet3` 和 `movie` 等工具实现图形的交互和动画效果。通过这些示例,读者可以轻松掌握 Matlab 的绘图技巧,并应用于数据可视化和分析中。
50 6
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
202 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
6月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
6月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
6月前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)