【从零学习python 】63.正则表达式中的re.Match类及其属性和方法介绍

简介: 【从零学习python 】63.正则表达式中的re.Match类及其属性和方法介绍

re.Match类介绍

当我们调用re.match方法、re.search方法,或者对re.finditer方法的结果进行迭代时,拿到的数据类型都是re.Match对象。

x = re.match(r'h','hello')
y = re.search(r'e','hello')
z = re.finditer(r'l','hello')
print(type(x))  # <class 're.Match'>
print(type(y))  # <class 're.Match'>
for a in z:
    print(type(a))  # <class 're.Match'>

这个类里定义了相关的属性,可以直接让我们来使用。

属性和方法 说明
pos 搜索的开始位置
endpos 搜索的结束位置
string 搜索的字符串
re 当前使用的正则表达式的对象
lastindex 最后匹配的组索引
lastgroup 最后匹配的组名
group(index=0) 某个分组的匹配结果。如果index等于0,便是匹配整个正则表达式
groups() 所有分组的匹配结果,每个分组的结果组成一个列表返回
groupdict() 返回组名作为key,每个分组的匹配结果座位value的字典
start([group]) 获取组的开始位置
end([group]) 获取组的结束位置
span([group]) 获取组的开始和结束位置
expand(template) 使用组的匹配结果来替换模板template中的内容,并把替换后的字符串返回
ret = re.search(r'(abc)+', 'xxxabcabcabcdef')
print(ret.pos)  # 搜索开始的位置,默认是0
print(ret.endpos)  # 搜索结束的位置,默认是字符串的长度
print(ret.group(0))  # abcabcabc 匹配整个表达式
print(ret.group(1))  # abc 第一次匹配到的结果
print(ret.span())  # (3, 12) 开始和结束位置
print(ret.groups())  # 表示当正则表达式里有多个分组时,多个分组的匹配结果
相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
251 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
测试技术 API Python
【10月更文挑战第1天】python知识点100篇系列(13)-几种方法让你的电脑一直在工作
【10月更文挑战第1天】 本文介绍了如何通过Python自动操作鼠标或键盘使电脑保持活跃状态,避免自动息屏。提供了三种方法:1) 使用PyAutoGUI,通过安装pip工具并执行`pip install pyautogui`安装,利用`moveRel()`方法定时移动鼠标;2) 使用Pymouse,通过`pip install pyuserinput`安装,采用`move()`方法移动鼠标绝对位置;3) 使用PyKeyboard,同样需安装pyuserinput,模拟键盘操作。文中推荐使用PyAutoGUI,因其功能丰富且文档详尽。
WK
|
20天前
|
Python
Python中format_map()方法
在Python中,`format_map()`方法用于使用字典格式化字符串。它接受一个字典作为参数,用字典中的键值对替换字符串中的占位符。此方法适用于从字典动态获取值的场景,尤其在处理大量替换值时更为清晰和方便。
WK
68 36
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
63 2
11种经典时间序列预测方法:理论、Python实现与应用
|
27天前
|
开发者 Python
Python中的魔法方法与运算符重载
在Python的奇妙世界里,魔法方法(Magic Methods)和运算符重载(Operator Overloading)是两个强大的特性,它们允许开发者以更自然、更直观的方式操作对象。本文将深入探讨这些概念,并通过实例展示如何利用它们来增强代码的可读性和表达力。
|
1月前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
352 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
1月前
|
机器学习/深度学习 人工智能 架构师
|
1月前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
64 0
|
5月前
|
数据库 Python
Python网络数据抓取(8):正则表达式
Python网络数据抓取(8):正则表达式
54 2