多元回归预测 | Matlab 向量加权优化算法优化深度极限学习机(INFO-DELM)回归预测

简介: 多元回归预测 | Matlab 向量加权优化算法优化深度极限学习机(INFO-DELM)回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在机器学习领域,回归预测是一个重要的任务,它用于预测连续型变量的值。近年来,深度学习技术的快速发展为回归预测提供了新的解决方案。然而,传统的深度学习方法在处理大规模数据集时可能会遇到一些问题,例如训练时间长、模型复杂度高等。为了解决这些问题,研究人员提出了一种基于向量加权算法改进的深度学习极限学习机(DELM)模型,该模型能够更有效地进行数据回归预测。

DELM模型是一种基于神经网络的回归预测模型,它通过将输入数据映射到隐层特征空间中,然后使用线性回归模型对映射后的特征进行预测。与传统的深度学习方法相比,DELM模型具有以下几个优势。

首先,DELM模型采用了向量加权算法来选择有效的特征。在传统的深度学习方法中,所有的特征都被同时用于预测,这可能导致一些无关紧要的特征对预测结果产生干扰。而DELM模型通过向量加权算法,能够根据特征的重要性对其进行加权,从而选择出对预测结果更有贡献的特征。

其次,DELM模型在训练过程中采用了增量学习的策略。在传统的深度学习方法中,模型通常需要重新训练才能适应新的数据。而DELM模型通过增量学习的策略,可以在已有模型的基础上,通过少量的训练样本进行模型更新,从而更好地适应新的数据。

此外,DELM模型还具有较低的计算复杂度。由于采用了向量加权算法和增量学习的策略,DELM模型在处理大规模数据集时能够大大减少计算时间和模型复杂度,提高了预测效率。

为了验证DELM模型的性能,研究人员进行了一系列实验。实验结果表明,DELM模型在各种数据集上都取得了较好的回归预测效果,且能够在较短的时间内完成训练。与传统的深度学习方法相比,DELM模型具有更高的预测准确性和更快的训练速度。

总的来说,基于向量加权算法改进的深度学习极限学习机(DELM)模型是一种有效的数据回归预测方法。它通过选择有效的特征、采用增量学习的策略和降低计算复杂度,提高了回归预测的准确性和效率。未来,我们可以进一步研究和改进DELM模型,以适应更复杂的回归预测任务,并在实际应用中发挥更大的作用。

核心代码

%% DELM训练函数%输入-----------------------%P_train 输入数据,数据格式为N*dim,N代表数据组数,dim代表数据维度。%T_train 输入标签数据%ActiveF 为激活函数,如'sig','sin','hardlim','tribas'等。%C为正则化系数%输出: outWeight为输出权重function OutWeight = DELMTrain(P_train,T_train,ELMAEhiddenLayer,ActivF,C)hiddenLayerSize = length(ELMAEhiddenLayer); %获取ELM-AE的层数outWieght = {};%用于存放所有的权重P_trainOrg = P_train;%% ELM-AE提取数据特征for i = 1:hiddenLayerSize    [~,B,Hnew] = ELM_AE(P_train,ActivF,ELMAEhiddenLayer(i)); %获取权重    OutWeight{i} = B';    P_train =P_train*B'; %输入经过第一层后传递给下一层end%% 最后一层ELM进行监督训练P = P_train;N =size(P,2);I = eye(N);beta = pinv((P'*P+I/C))*P'*T_train;OutWeight{hiddenLayerSize + 1} = beta; %存储最后一层ELM的信息。end

⛄ 运行结果

⛄ 参考文献

[1] 全凌翔.基于多信息的转炉炼钢建模与优化算法研究[J].[2023-08-27].

[2] 周莉,刘东,郑晓亮.基于PSO-DELM的手机上网流量预测方法.2021[2023-08-27].DOI:10.16208/j.issn1000-7024.2021.02.003.

[3] 吴向明,杨晨光,韩光,等.分时电价预测方法,装置及终端设备:CN202111170936.5[P].CN202111170936.5[2023-08-27].

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合




相关文章
|
10天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
18天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
19天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
19天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
19天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
37 3
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
204 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
130 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
94 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
下一篇
无影云桌面