时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

预测结果

image.png
image.png
image.png

image.png

基本介绍

MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)
1.MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价);
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章
|
8月前
|
机器学习/深度学习 数据可视化
数据分享|R语言逻辑回归Logisitc逐步回归训练与验证样本估计分析心脏病数据参数可视化
数据分享|R语言逻辑回归Logisitc逐步回归训练与验证样本估计分析心脏病数据参数可视化
|
8月前
|
数据可视化
R语言GAMLSS模型对艾滋病病例、降雪量数据拟合、预测、置信区间实例可视化
R语言GAMLSS模型对艾滋病病例、降雪量数据拟合、预测、置信区间实例可视化
|
程序员
时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)
|
8月前
|
数据可视化
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
|
8月前
|
算法 数据挖掘 C#
C# | 线性回归算法的实现,只需采集少量数据点,即可拟合整个数据集
什么是线性回归呢? 简单来说,线性回归是一种用于建立两个变量之间线性关系的统计方法。在我们的软件开发中,线性回归可以应用于数据分析、预测和优化等领域。 什么情况下会用到线性回归呢? 线性回归可以用于探索数据之间的关系,可以用于预测未来的趋势。通过少量的数据点就能得到一个可以代表整个数据集的模型。换句话说,只需要采集少量的数据点,就可以拟合出整个数据集。
306 0
|
机器学习/深度学习 传感器 算法
多元分类预测 | Matlab 蛇群算法优化随机森林(SO-RF)分类预测
多元分类预测 | Matlab 蛇群算法优化随机森林(SO-RF)分类预测
|
机器学习/深度学习 传感器 算法
多元分类预测 | Matlab 麻雀优化随机森林(SSA-RF)分类预测
多元分类预测 | Matlab 麻雀优化随机森林(SSA-RF)分类预测
|
机器学习/深度学习 传感器 算法
多元分类预测 | Matlab 鲸鱼优化算法优化随机森林(WOA-RF)分类预测
多元分类预测 | Matlab 鲸鱼优化算法优化随机森林(WOA-RF)分类预测
|
机器学习/深度学习 传感器 算法
多元分类预测 | Matlab 粒子群算法优化随机森林(PSO-RF)分类预测
多元分类预测 | Matlab 粒子群算法优化随机森林(PSO-RF)分类预测
|
机器学习/深度学习
时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)