多元时间序列 | Matlab遗传算法优化深度置信网络(GA-DBN)多变量时间序列预测

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 多元时间序列 | Matlab遗传算法优化深度置信网络(GA-DBN)多变量时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于遗传算法优化深度置信网络GA-DBN实现数据回归多输出预测的方法是非常有前景和潜力的。遗传算法作为一种优化算法,能够通过模拟生物进化的过程来搜索最优解,而深度置信网络则是一种强大的机器学习模型,能够从大量的数据中学习并提取特征。将这两种方法结合起来,可以有效地解决数据回归问题,并实现多输出预测。

在实际应用中,数据回归多输出预测的需求日益增长。例如,在金融领域,我们需要根据历史数据来预测未来的股票价格、汇率走势等多个指标。而传统的回归模型往往只能处理单个输出,难以满足实际需求。因此,采用基于遗传算法优化深度置信网络的方法,可以更好地解决这一问题。

遗传算法的优势在于它能够通过自然选择、交叉和变异等操作来不断优化网络的结构和参数,从而提高模型的性能。同时,深度置信网络的优势在于它能够通过多层的非线性变换来逐层抽取数据的高级特征,从而更好地捕捉数据之间的复杂关系。因此,将遗传算法与深度置信网络相结合,可以进一步提高模型的预测准确性和泛化能力。

当然,基于遗传算法优化深度置信网络的方法也存在一些挑战和限制。首先,遗传算法的运行时间较长,需要较大的计算资源和时间成本。其次,深度置信网络的训练过程较为复杂,需要大量的训练数据和调参工作。此外,模型的解释性和可解释性也是一个重要的问题,特别是在一些对模型解释性要求较高的领域。

总的来说,基于遗传算法优化深度置信网络的方法在数据回归多输出预测方面具有很大的潜力。通过充分利用遗传算法和深度置信网络的优势,我们可以更好地解决实际问题,并取得更好的预测效果。希望未来能够有更多的研究和实践工作,进一步推动这一方法的发展和应用。

核心代码

function ret=Decode(lenchrom,bound,code,opts)% 本函数对染色体进行解码% lenchrom   input : 染色体长度% bound      input : 变量取值范围% code       input :编码值% opts       input : 解码方法标签% ret        output: 染色体的解码值switch opts    case 'binary' % binary coding        for i=length(lenchrom):-1:1        data(i)=bitand(code,2^lenchrom(i)-1);  %并低十位,然后将低十位转换成十进制数存在data(i)里面        code=(code-data(i))/(2^lenchrom(i));   %低十位清零,然后右移十位        end        ret=bound(:,1)'+data./(2.^lenchrom-1).*(bound(:,2)-bound(:,1))';  %分段解码,以实数向量的形式存入ret中            case 'grey'   % grey coding        for i=sum(lenchrom):-1:2            code=bitset(code,i-1,bitxor(bitget(code,i),bitget(code,i-1)));        end        for i=length(lenchrom):-1:1        data(i)=bitand(code,2^lenchrom(i)-1);        code=(code-data(i))/(2^lenchrom(i));        end        ret=bound(:,1)'+data./(2.^lenchrom-1).*(bound(:,2)-bound(:,1))'; %分段解码,以实数向量的形式存入ret中            case 'float'  % float coding        ret=code; %解码结果就是编码结果(实数向量),存入ret中end

⛄ 运行结果

⛄ 参考文献

[1] 谭小钰,刘芳,马俊杰,等.基于DBN与T-S时变权重组合的光伏功率超短期预测模型[J].太阳能学报, 2021, 42(10):7.

[2] 李妮.基于深度信念网络的时间序列预测研究[D].西安理工大学,2019.

[3] 梁彩霞,高赵亮.基于相似日和GA-DBN神经网络的光伏发电短期功率预测[J].电气应用, 2019, 38(3):6.DOI:CNKI:SUN:DGJZ.0.2019-03-020.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合
相关文章
|
9天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
29 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
9天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
10天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
8天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
9天前
|
存储 监控 算法
局域网网络管控里 Node.js 红黑树算法的绝妙运用
在数字化办公中,局域网网络管控至关重要。红黑树作为一种自平衡二叉搜索树,凭借其高效的数据管理和平衡机制,在局域网设备状态管理中大放异彩。通过Node.js实现红黑树算法,可快速插入、查找和更新设备信息(如IP地址、带宽等),确保网络管理员实时监控和优化网络资源,提升局域网的稳定性和安全性。未来,随着技术融合,红黑树将在网络管控中持续进化,助力构建高效、安全的局域网络生态。
29 9
|
7天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
22天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
157 80
|
15天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
18天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章