干货丨 一文详解SGAT单基因关联分析工具(三)

简介: 干货丨 一文详解SGAT单基因关联分析工具(三)

显著SNP位点提取与转化

根据GWAS得到的Rresult文件信息,能够找出每个snp位点对应的显著性情况和基因变异信息,接下来,需要根据表格中的信息进行归纳总结,对不同显著性层次进行区分,找出可能性最大的点,过程比较繁琐。

这里笔者分享一个算法,使统计SNP和变异类型变的更加简便快捷,主要基于R语言的tidyverse完成。


主要步骤与思路解析

  • 加载R包与环境,表型和基因列表文件
  • 定义变异信息转换函数
  • 创建输出数据框,包括基因和注释信息
  • 迭代筛选符合要求的SNP
  • 按照多个层次依次统计显著情况
  • 结果合并与注释

操作步骤

加载R包

library(tidyverse)
library(writexl)
library(xlsx)

读取输入文件

list_phe <- read.table("./01_scripts/list_phe.txt",header = F)
# list_gene <- read.table("./01_scripts/list_gene.txt",header = F)
list_gene <- read.table("./17_GWAS_SNP_varient_find/gene.id",header = F)
varient_db <- read.table("./01_scripts/function/varient_name.txt",sep = "\t",header = F)

主要依赖三个文件,phe为变形列表,需要与GWAS结果的phe一致,gene为基因ID列表,varient_db是变异类型注释库,包含一一对应的变异信息。

变异信息转换

# 定义一个转换变异的函数
varient_name <- function(x){
      if (x %in% varient_db$V1){
            for (i in 1:nrow(varient_db)){
                  if (varient_db$V1[i]==x){
                        return(varient_db$V2[i])
                  }
            } 
      }else{
            return(x)
      }
}

这里定义一个函数,对输入的变异类型自动查找匹配的注释信息,若出现不存在于已有的变异类型,则返回原始值,后续结果中方便检查和校正。

创建输出数据框

out <- list_gene
colnames(out) <- "gene"
out$additon <- NA

在计算开始前,创建一个空数据框,用于迭代过程中添加信息,提前分配储存空间,其中第一列为基因ID,第二列为注释。

迭代筛选算法

下面我提供了两种思路,方法一是先对每个表型下的所有snp进行判断,如果存在大于阈值的显著位点则备注,反之舍弃。

方法二是先找出单个SNP,然后再判断该位点处有多少个表型符合要求,如果存在多个表型均显著,则将其归纳统计到一起。

for (job in list_gene$V1){
      print(job)
      df <- read.xlsx(paste0("./16_out_GWAS_and_T/",job,"_all.xlsx"),sheetIndex = 1)
      # 法一:寻找每个表型下的SNP
      # 7  9 11 13 15 17 19 21 23 25 27 29 为待提取的值
      # for (i in seq(7,29,2)){ 
      #       phe <- colnames(df)[i]
      #       df_p7_snp <- df %>% arrange(!!sym(phe)) %>% filter(!!sym(phe)>7)
      #       df_p3_snp <- df %>% arrange(!!sym(phe)) %>% filter(!!sym(phe)>3) %>% filter(!!sym(phe)<7)
      #       # P值大于7
      #       var_en <- df_p7_snp$T_eff[1] %>% str_split("[,]") %>% str_split("[|]")
      #       var_en <- var_en[[1]][2]
      #       var_cn <- varient_name(var_en)
      # }
      # 法二:寻找每个snp下符合的表型
      find <- matrix(ncol = 4,nrow = 0)
      colnames(find) <- c("snp","var","p","phe")
      for (i in 1:nrow(df)){
            snp_name <- df$SNP[i]
            if (is.na(df$T_eff[i])){next}
            snp_var_en <- df$T_eff[i] %>% str_split("[,]")
            snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
            if (substr(snp_var_en,4,22)!=job){next}
            snp_var_en <- snp_var_en[[1]][2]
            snp_var_en <- varient_name(snp_var_en)
            snp_phe_p <- df[i,c(seq(7,29,2))]
            find_phe <- c()
            for (i in 1:ncol(snp_phe_p)){
                  if (snp_phe_p[1,i]>7){
                        find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                  }
            }
            find_snp <- c(snp_name,snp_var_en,"[P>7]",paste0(find_phe,collapse = "+"))
            if (find_snp[4]!=""){
                  find <- rbind(find,find_snp)
            }
      }
      if (nrow(find) == 0){
      find <- matrix(ncol = 4,nrow = 0)
      colnames(find) <- c("snp","var","p","phe")
      for (i in 1:nrow(df)){
            snp_name <- df$SNP[i]
            if (is.na(df$T_eff[i])){next}
            snp_var_en <- df$T_eff[i] %>% str_split("[,]")
            snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
            if (substr(snp_var_en,4,22)!=job){next}
            snp_var_en <- snp_var_en[[1]][2]
            snp_var_en <- varient_name(snp_var_en)
            snp_phe_p <- df[i,c(seq(7,29,2))] 
            find_phe <- c()
            for (i in 1:ncol(snp_phe_p)){
                  if (snp_phe_p[1,i]>5){
                        find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                  }
            }
            find_snp <- c(snp_name,snp_var_en,"[P>5]",paste0(find_phe,collapse = "+"))
            if (find_snp[4]!=""){
                  find <- rbind(find,find_snp)
            }
         }
      }
      if (nrow(find) == 0){
            find <- matrix(ncol = 4,nrow = 0)
            colnames(find) <- c("snp","var","p","phe")
            for (i in 1:nrow(df)){
                  snp_name <- df$SNP[i]
                  if (is.na(df$T_eff[i])){next}
                  snp_var_en <- df$T_eff[i] %>% str_split("[,]")
                  snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
                  if (substr(snp_var_en,4,22)!=job){next}
                  snp_var_en <- snp_var_en[[1]][2]
                  snp_var_en <- varient_name(snp_var_en)
                  snp_phe_p <- df[i,c(seq(7,29,2))] 
                  find_phe <- c()
                  for (i in 1:ncol(snp_phe_p)){
                        if (snp_phe_p[1,i]>3){ 
                              find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                        }
                  }
                  find_snp <- c(snp_name,snp_var_en,"[P>3]",paste0(find_phe,collapse = "+"))
                  if (find_snp[4]!=""){
                        find <- rbind(find,find_snp)
                  }
            }
      }
      var_info <- c()
      out_info <- c()
      if (nrow(find)==0){
            out_info <- "GAPIT:log10.P < 3"
      }else{
            for (i in 1:nrow(find)){
                  var_info <- c(var_info,find[i,2],find[i,1],find[i,3],paste0("(",find[i,4],"),"))
            }
            out_info <- paste0(nrow(find),"个-GAPIT分析",paste0(var_info,collapse =""))
            out_info <- substr(out_info,1,nchar(out_info)-1)
      }
      for (i in 1:nrow(out)){
            if (identical(out$gene[i],job)){
                  out$additon[i] <- out_info
                  break
            }
      }
}

上述算法的核心是先从基因列表中取一个基因,然后找这个基因对应的snp和表型,如果找到某些snp在多个表型中显著性都大于7,则将其添加到注释信息,但是如果没有大于7的位点,则开始继续寻找是否存在大于5的位点,以此类推,若也没有大于5的点,则寻找大于3的位点。

该过程将显著区间分为三层,只有上层个数为零时,才会启动下一层的搜索,因此保证了每次结果的显著性差异保持在相对较平均的范围中,防止过大过小的位点同时选中。

结果保存

write.xlsx(out,
    "./17_GWAS_SNP_varient_find/gene_infomation.xlsx",
    sheetName = "varient",
    row.names = F,col.names = T)

结果文件保存在out变量中,将其输出为excel即可,如有其它想法可以根据out再进行深入分析,本文不做延伸。

本项目测试运行环境

  • centos7 linux
  • R4.2.3

参考资料:

Plink、Tassel、LDBlockshow、GAPIT、Tidyverse、vcfR、ape、do、multtest、LDheatmap、genetics、scatterplot3d、EMMREML等

声明

SGAT遵循国际GNU General Public License v3.0,核心算法和代码均开源公布,进行科学研究学习交流,不涉及商业使用,如果有任何问题欢迎联系。

软件公开发布链接:

doi.org/10.5281/zenodo.7783891


感谢您能看到这里,觉得有趣欢迎转发~

END

© 素材来源于网络,侵权请联系后台删除

笔记合集,点击直达

相关文章
|
4月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
98 2
|
算法 搜索推荐 UED
文档关联规则挖掘算法:提升文档管理软件效率的新途径
使用文档关联规则挖掘算法来提高文档管理软件的管理效率可是一个非常棒的办法,就像熟练的园丁在整理花园一样,轻松为用户梳理海量文档。这种算法犹如一把神奇的法宝,能够揭示文档之间的奇妙关系和潜在模式,使文档分类、检索和推荐如丝般顺滑,就像天然的流水一般。接下来,就让我们来探讨一下如何通过文档关联规则挖掘算法提高文档管理软件的管理效率吧——
239 0
|
算法 Linux Shell
干货丨 一文详解SGAT单基因关联分析工具
干货丨 一文详解SGAT单基因关联分析工具
|
算法 数据处理
干货丨 一文详解SGAT单基因关联分析工具(二)
干货丨 一文详解SGAT单基因关联分析工具(二)
|
机器学习/深度学习 存储 运维
论文阅读--异常检测中实时大数据处理的研究挑战
论文阅读--异常检测中实时大数据处理的研究挑战
|
存储 运维 数据可视化
突破数据分析瓶颈,寻因生物单细胞测序数据分析迈入云时代
i4p持久内存实例+Memory Machine大内存虚拟化软件,发挥持久内存的全部性能。
突破数据分析瓶颈,寻因生物单细胞测序数据分析迈入云时代
|
机器学习/深度学习 数据可视化 算法
数据探索很麻烦?推荐一款史上最强大的特征分析可视化工具:yellowbrick
数据探索很麻烦?推荐一款史上最强大的特征分析可视化工具:yellowbrick
数据探索很麻烦?推荐一款史上最强大的特征分析可视化工具:yellowbrick
|
机器学习/深度学习 人工智能 自然语言处理
数据分析起家的海云数据,还想向唇语识别冲刺
作为海云数据创始人兼 CEO,不仅是因为其自主研发的唇语识别技术,提高英文识别准确率,更重要的是,冯一村找到了唇语识别的变现之道。
285 0
数据分析起家的海云数据,还想向唇语识别冲刺
|
存储 SQL 算法
【重新发现PostgreSQL之美】- 11 时空轨迹系统 新冠&刑侦&预测
大家好,这里是重新发现PostgreSQL之美 - 11 时空轨迹系统 新冠&刑侦&预测
《大数据分析原理与实践》——第3章 关联分析模型
本节书摘来自华章计算机《大数据分析原理与实践》一书中的第3章,作者 王宏志,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
3921 0
下一篇
无影云桌面