转录组下游分析丨利用limma包进行差异表达分析,结果可视化绘制火山图和热图

简介: 转录组下游分析丨利用limma包进行差异表达分析,结果可视化绘制火山图和热图

limma差异表达分析

本篇笔记的内容是在R语言中利用limma包进行差异表达分析,主要针对转录组测序得到的基因表达数据进行下游分析,并将分析结果可视化,绘制火山图热图。


  • 环境部署与安装
  • 输入数据准备
  • 差异表达分析过程
  • 准备环节
  • 数据导入
  • 构建分组矩阵
  • 构建比较矩阵
  • 线性混合模拟
  • 差异基因标注
  • 结果保存
  • 区分上下调基因
  • 差异基因名称提取
  • 自定义筛选阈值
  • 结果可视化
  • 火山图绘制方法一
  • 火山图绘制方法二
  • 热图绘制



基因表达差异分析是我们做转录组最关键根本的一步,不管哪种差异分析,其本质都是广义线性模型,limma也是广义线性模型的一种,其对每个gene的表达量拟合一个线性方程。

limma包是2015年发表在Nucleic Acids Resarch一个做差异分析的工具,目前引用次数高达七千多次,最流行的差异分析软件之一就是limma。

环境部署与安装

  • 安装limma包
if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("limma")
  • 安装ggVolcano包
# install.packages("devtools")
devtools::install_github("BioSenior/ggVolcano")
  • 安装ggplot2包
#直接安装tidyverse,一劳永逸(推荐,数据分析大礼包)
install.packages("tidyverse")
#直接安装ggplot2
install.packages("ggplot2")
#从Github上安装最新的版本,先安装devtools(如果没安装的话)
devtools::install_github("tidyverse/ggplot2")

输入数据准备

  • 样本信息表:第一列为样本名称ID,第二列为样本的分组(CK、HT),sampleinfo.csv格式如下

这一步需要注意:每个分组下至少有两个生物学重复,即至少4行数据,如果没有重复的话在后续贝叶斯检验会出错,原因是该模型利用统计假设检验,多个重复能够评估变异性,而如果仅有一组数据,则无法检验。

sample group
A01 CK
A02 HT
  • 表达矩阵:每行是一个基因,每列是一个样本,表达数据为TPM,data.csv格式如下

A01 A02
gene1 xx xx
gene2 xx xx

差异表达分析过程

准备环节

载入R包,设置参数,其中job变量用于项目输出文件前缀标识,可以自定义修改。

setwd("D:/LABdata")
options(stringsAsFactors = F)
rm(list=ls()) #清空变量
job <- "test" #设定项目名称
library(limma)
library(ggplot2) #用于绘制火山图
library(ggVolcano)

数据导入

导入样本信息和表达量数据,然后进行删除表达量之和为0基因、log2化、替换异常值等步骤,得到原始数据矩阵。

# 输入表达矩阵和分组文件 -------------------------------------------------------------
expr_data<-read.csv("data.csv",header = T,row.names = 1,sep = ",") #输入文件TPM原始值,行名是基因,列名是样本
expr_data <- expr_data[which(rowSums(expr_data)!=0),] #删除表达量为0的基因
expr_data = log2(expr_data) #log化处理
expr_data[expr_data == -Inf] = 0 #将log化后的负无穷值替换为0
group<-read.csv("sampleinfo.csv",header = T,row.names = 1,sep = ",") #输入文件,样本信息表,包含分组信息

构建分组矩阵

根据样本的分组信息,构建分组矩阵,最终得到的design矩阵由0和1构成,为斜对角矩阵。

# 构建分组矩阵--design ---------------------------------------------------------
design <- model.matrix(~0+factor(group$group))
colnames(design) <- levels(factor(group$group))
rownames(design) <- colnames(expr_data)

构建比较矩阵

设置样本的比较方式,这里为CK对照比HT处理,该步骤生成的文件为1和-1构成的矩阵。

# #构建比较矩阵——contrast -------------------------------------------------------
contrast.matrix <- makeContrasts(CK-HT,levels = design) #根据实际的样本分组修改,这里对照组CK,处理组HT

线性混合模拟

该步骤是limma包的核心步骤,首先使用lmFit函数进行非线性最小二乘法分析,然后用经验贝叶斯调整t-test中方差部分,得到差异表达结果。

# #线性拟合模型构建 ---------------------------------------------------------------
fit <- lmFit(expr_data,design) #非线性最小二乘法
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)#用经验贝叶斯调整t-test中方差的部分
DEG <- topTable(fit2, coef = 1,n = Inf,sort.by="logFC")
DEG <- na.omit(DEG)

最终生成的DEG文件包含以下几列信息:

> colnames(DEG)
[1] "logFC"     "AveExpr"   "t"         "P.Value"   "adj.P.Val" "B"        
[7] "regulate"  "Genes"

差异基因标注

本步骤中对P.ValuelogFC进行筛选,并对每个基因进行标注,显示其表达变化情况。

DEG$regulate <- ifelse(DEG$P.Value > 0.05, "unchanged",
        ifelse(DEG$logFC > 1, "up-regulated",
        ifelse(DEG$logFC < -1, "down-regulated", "unchanged")))

结果保存

生成两个文件,保存差异表达结果。

write.table(table(DEG$regulate),file = paste0(job,"_","DEG_result_1_005.txt"),
            sep = "\t",quote = F,row.names = T,col.names = T)
write.table(data.frame(gene_symbol=rownames(DEG),DEG),file = paste0(job,"_","DEG_result.txt"),
            sep = "\t",quote = F,row.names = F,col.names = T)

区分上下调基因

该步骤中DEG$P.Value<0.05&abs(DEG$logFC)>1为参数,筛选了差异倍数和显著性,并将基因按照上调和下调进行区分。

DE_1_0.05 <- DEG[DEG$P.Value<0.05&abs(DEG$logFC)>1,]
upGene_1_0.05 <- DE_1_0.05[DE_1_0.05$regulate == "up-regulated",]
downGene_1_0.05 <- DE_1_0.05[DE_1_0.05$regulate == "down-regulated",]
write.csv(upGene_1_0.05,paste0(job,"_","upGene_1_005.csv"))
write.csv(downGene_1_0.05,paste0(job,"_","downGene_1_005.csv"))

差异基因名称提取

提取差异倍数最大的1000个基因,按照顺序保存到txt文本中,只保留基因名称ID,用于后续验证。

tem1 <- head(rownames(upGene_1_0.05),1000) #以logFC差异倍数从大到小为序,提取前1000个基因名称
tem2 <- as.data.frame(tem1) # 转化数据类型为数据框
write.table(tem2$tem,file = paste0(job,"_","upgene_head100_name.txt"),
          row.names = FALSE,col.names = FALSE)
tem1 <- head(rownames(downGene_1_0.05),1000) #以logFC差异倍数从大到小为序,提取前1000个基因名称
tem2 <- as.data.frame(tem1) # 转化数据类型为数据框
write.table(tem2$tem,file = paste0(job,"_","downgene_head100_name.txt"),
          row.names = FALSE,col.names = FALSE)

自定义筛选阈值

之前的结果均为默认设置,如果你需要修改,仅需更改下面开头两行参数即可,运行后可以得到3个文件,分别是差异基因集、上下调过滤所得基因信息。

foldChange = 2 # 自定义修改筛选参数
padj = 0.05 # 自定义修改筛选参数
All_diffSig <- DEG[(DEG$adj.P.Val < padj & (DEG$logFC > foldChange | DEG$logFC < (-foldChange))),]
#dim(All_diffSig)
write.csv(All_diffSig, paste0(job,"_","all_diffsig_filtered.csv"))  ##输出差异基因数据集
### 自定义筛选上调和下调的基因 ===================================================================
diffup <-  All_diffSig[(All_diffSig$P.Value < padj & (All_diffSig$logFC > foldChange)),]
write.csv(diffup, paste0(job,"_","diffup_filtered.csv"))
diffdown <- All_diffSig[(All_diffSig$P.Value < padj & (All_diffSig$logFC < -foldChange)),]
write.csv(diffdown, paste0(job,"_","diffdown_filtered.csv"))

利用limma分析后,正常情况下应该会生成下面这些数据文件,可以用于验证过程中是否有问题。

image-20230222202113721

结果可视化

火山图绘制方法一

有了上面的DEG差异分析结果,根据gene、logFC、adj.P.Val三列信息即可绘制火山图,第一种方法使用ggvolcano,绘图代码如下:

# ggvolcano绘制火山图 ----------------------------------------------------------
pdf(paste0(job,"_","volcano1.pdf"),width = 10,height = 10)
ggvolcano(data = DEG,x = "logFC",y = "P.Value",output = FALSE,label = "Genes",
          fills = c("#00AFBB", "#999999", "#FC4E07"),
          colors = c("#00AFBB", "#999999", "#FC4E07"),
          x_lab = "log2FC",
          y_lab = "-Log10P.Value",
          legend_position = "UR") #标签位置为up right
dev.off()

image-20230222202352090

火山图绘制方法二

第二种方法使用ggplot2,得到另外一种形式的火山图,绘图代码如下:

# 火山图的绘制 ------------------------------------------------------------------
DEG$Genes <- rownames(DEG)
pdf(paste0(job,"_","volcano2.pdf"),width = 7,height = 7)
ggplot(DEG,aes(x=logFC,y=-log10(P.Value)))+ #x轴logFC,y轴adj.p.value
  geom_point(alpha=0.5,size=2,aes(color=regulate))+ #点的透明度,大小
  ylab("-log10(P.Value)")+ #y轴的说明
  scale_color_manual(values = c("blue", "grey", "red"))+ #点的颜色
  geom_vline(xintercept = c(-1,1),lty=4,col ="black",lwd=0.8)+ #logFC分界线
  geom_hline(yintercept=-log10(0.05),lty=4,col = "black",lwd=0.8)+ #adj.p.val分界线
  theme_bw()  #火山图绘制
dev.off()

image-20230222202415207

热图绘制

根据基因的表达变化信息,绘制热图并展示聚类树,详细代码如下:

# 热图的绘制 -------------------------------------------------------------------
DEG_genes <- DEG[DEG$P.Value<0.05&abs(DEG$logFC)>1,]
DEG_gene_expr <- expr_data[rownames(DEG_genes),]
#DEG_gene_expr[is.infinite(DEG_gene_expr)] = 0
#DEG_gene_expr[DEG_gene_expr == -Inf] = 0
pdf(paste0(job,"_","pheatmap.pdf"))
pheatmap(DEG_gene_expr,
         color = colorRampPalette(c("blue","white","red"))(100), #颜色
         scale = "row", #归一化的方式
         border_color = NA, #线的颜色
         fontsize = 10, #文字大小
         show_rownames = F)
dev.off()

image-20230222202505089

参考资料:https://zhuanlan.zhihu.com/p/437712423

© 素材来源于网络,侵权请联系后台删除

往期推荐:

文献丨群体转录组分析锁定关键转录因子

文献丨转录组RNA seq——青年阶段!

文献丨高通量表型组图像识别与GWAS

笔记丨ggplot2热图入门学习笔记

笔记丨PCA分析基本知识和数学原理

图书丨R语言、Python、Linux

超算丨数据分析时电脑配置不够用?试试

软件 | 如何进行基因家族分析?TBtools

服务器丨家用联想台式机重装Linux系统

转录组丨一套完整的操作流程案例

Python学习笔记丨数据类型基础与易错点总结

相关文章
|
人工智能 数据可视化 Go
R绘图实战|GSEA富集分析图
GSEA(Gene Set EnrichmentAnalysis),即基因集富集分析,它的基本思想是使用预定义的基因,将基因按照在两类样本中的差异表达程度排序,然后检验预先设定的基因集合是否在这个排序表的顶端或者底端富集。
2715 0
R绘图实战|GSEA富集分析图
|
5天前
|
数据可视化 Python
基因组之全局互作热图可视化
基因组之全局互作热图可视化
18 1
基因组之全局互作热图可视化
|
6月前
|
数据可视化
R语言生态学进化树推断物种分化历史:分类单元数与时间关系、支系图可视化
R语言生态学进化树推断物种分化历史:分类单元数与时间关系、支系图可视化
R语言生态学进化树推断物种分化历史:分类单元数与时间关系、支系图可视化
|
6月前
|
并行计算 前端开发 数据可视化
R语言面板平滑转换回归(PSTR)分析案例实现
R语言面板平滑转换回归(PSTR)分析案例实现
|
6月前
|
并行计算 前端开发 数据可视化
面板平滑转换回归(PSTR)分析案例实现
面板平滑转换回归(PSTR)分析案例实现
|
6月前
|
算法 数据可视化
R语言社区检测算法可视化网络图:ggplot2绘制igraph对象分析物种相对丰度
R语言社区检测算法可视化网络图:ggplot2绘制igraph对象分析物种相对丰度
|
6月前
|
数据可视化 网络可视化
R语言混合图形模型MGM的网络可预测性分析
R语言混合图形模型MGM的网络可预测性分析
|
6月前
|
数据可视化
cfDNAPro|cfDNA片段数据生物学表征及可视化的R包
cfDNA是指存在于血液中的游离DNA片段,来源于正常和异常细胞的死亡。这些片段长度通常为160-180碱基对,研究cfDNA在非侵入性诊断、疾病监测、早期检测和理解生理及病理状态方面有重要意义。cfDNAPro是一个工具,用于分析cfDNA的片段长度分布,提供数据表征和可视化。它能展示片段长度的整体、中位数和众数,以及峰和谷的分布,还有振荡周期性。通过上图和下图的对比,可以观察到不同队列中cfDNA片段长度的差异。此外,cfDNAPro还能展示DNA片段的模态长度,分析10bp周期性振荡模式,帮助科学家深入了解cfDNA的特征。
119 0
|
数据可视化 数据挖掘 Linux
科研绘图丨使用R语言Pheatmap包快速绘制基因表达量热图的方法,支持聚类和配色自定义修改
科研绘图丨使用R语言Pheatmap包快速绘制基因表达量热图的方法,支持聚类和配色自定义修改
|
数据可视化
利用ggcor包绘制相关性组合图及环状热图
ggcor包最初是因为能快速实现19年Science一组合相关性图(上图所示)变得流行起来,除此该包对热图、热图等等的可视化都是很方便快捷的,除了之前介绍过的几种相关性图几种方式,此包也是个不错的选择,且具独特的风格(特别是组合相关性图、环形热图)。但是不知道因为何种原因此包在Github上消失了....,到作者(厚缊)个人博客上瞅了瞅发现关于包的参数介绍示例等也都没有了,在评论区里看到作者回答项目已不再提供任何代码和任何资料,需要的可以去国内的gitee和国外的github搜索看看有没有别人存的代码。
676 0