“超级AI助手:全新提升!中文NLP训练框架,快速上手,海量训练数据,ChatGLM-v2、中文Bloom、助您实现更智能的应用!”

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: “超级AI助手:全新提升!中文NLP训练框架,快速上手,海量训练数据,ChatGLM-v2、中文Bloom、助您实现更智能的应用!”

“超级AI助手:全新提升!中文NLP训练框架,快速上手,海量训练数据,ChatGLM-v2、中文Bloom、Dolly_v2_3b助您实现更智能的应用!”

1.简介

  1. 目标:基于pytorchtransformers做中文领域的nlp开箱即用的训练框架,提供全套的训练、微调模型(包括大模型、文本转向量、文本生成、多模态等模型)的解决方案;
  2. 数据
    • 从开源社区,整理了海量的训练数据,帮助用户可以快速上手;
    • 同时也开放训练数据模版,可以快速处理垂直领域数据;
    • 结合多线程、内存映射等更高效的数据处理方式,即使需要处理百GB规模的数据,也是轻而易举;
  3. 流程:每一个项目有完整的模型训练步骤,如:数据清洗、数据处理、模型构建、模型训练、模型部署、模型图解;
  4. 模型:当前已经支持gpt2clipgpt-neoxdollyllamachatglm-6bVisionEncoderDecoderModel等多模态大模型;
  5. 多卡串联
    :当前,多数的大模型的尺寸已经远远大于单个消费级显卡的显存,需要将多个显卡串联,才能训练大模型、才能部署大模型。因此对部分模型结构进行修改,实现了训练时推理时
    的多卡串联功能。
  • 模型训练
中文名称 文件夹名称 数据 数据清洗 大模型 模型部署 图解
中文文本分类 chinese_classifier
中文gpt2 chinese_gpt2
中文clip chinese_clip
图像生成中文文本 VisionEncoderDecoderModel
vit核心源码介绍 vit model
Thu-ChatGlm-6b(v1) simple_thu_chatglm6b
🌟chatglm-v2-6b🎉 chatglm_v2_6b_lora
中文dolly_v2_3b dolly_v2_3b
中文llama chinese_llama
中文bloom chinese_bloom
中文falcon(注意:falcon模型和bloom结构类似) chinese_bloom
中文预训练代码 model_clm
百川大模型 model_baichuan
模型修剪✂️ model_modify
llama2 流水线并行 pipeline

2.thu-chatglm-6b模型教程

  1. 本文件夹📁只能进行单机单卡训练,如果想要使用单机多卡,请查看文件夹📁Chatglm6b_ModelParallel_ptuning
介绍 路径 状态
使用lora训练chatglm6b 就是本文件夹
使用ptuning-v2模型并行训练chatglm6b https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/Chatglm6b_ModelParallel_ptuning

在文件code02_训练模型全部流程.ipynbcell-5代码的前面,创建一个新的cell,然后把下面的代码放到这个cell里面


q1 = '''您叫什么名字?
您是谁?
您叫什么名字?这个问题的答案可能会提示出您的名字。
您叫这个名字吗?
您有几个名字?
您最喜欢的名字是什么?
您的名字听起来很好听。
您的名字和某个历史人物有关吗?
您的名字和某个神话传说有关吗?
您的名字和某个地方有关吗?
您的名字和某个运动队有关吗?
您的名字和某个电影或电视剧有关吗?
您的名字和某个作家有关吗?
您的名字和某个动漫角色有关吗?
您的名字和某个节日有关吗?
您的名字和某个动物有关吗?
您的名字和某个历史时期有关吗?
您的名字和某个地理区域有关吗?
您的名字和某个物品有关吗?比如,如果您的名字和铅笔有关,就可以问“您叫什么名字?您是不是用铅笔的人?”
您的名字和某个梦想或目标有关吗?
您的名字和某个文化或传统有关吗?
您的名字和某个电影或电视节目的情节有关吗?
您的名字和某个流行歌手或演员有关吗?
您的名字和某个体育运动员有关吗?
您的名字和某个国际组织有关吗?
您的名字和某个地方的气候或环境有关吗?比如,如果您的名字和春天有关,就可以问“您叫什么名字?春天是不是一种温暖的季节?”
您的名字和某个电影或电视节目的主题有关吗?
您的名字和某个电视节目或电影的角色有关吗?
您的名字和某个歌曲或音乐有关吗?
您叫什么名字?
谁创造了你
'''
q1 = q1.split('\n')
a1 = ["我是良睦路程序员开发的一个人工智能助手", "我是良睦路程序员再2023年开发的AI人工智能助手"]
import random

target_len__ = 6000


d1 = pd.DataFrame({
   
   'instruction':[random.choice(q1) for i in range(target_len__)]}).pipe(
    lambda x: x.assign(**{
   
   
    'input':'',
    'output':[random.choice(a1) for i in range(target_len__)]
    })
)
d1
alldata = d1.copy()

注意:

  1. 如果想要覆盖模型老知识,你数据需要重复很多次才行~
  2. 文件不要搞错了,使用我最新的代码文件

只是对transofrmers包的Trainer类做了修改,对modeling_chatglm.py代码也做了修改。
这么做,可以让你在拥有22G显存的情况下,可以训练thu-chatglm-6b模型。

那么,基于Trainer的丰富方法,你可以做很多事情。而且使用pefthttps://github.com/huggingface/peftlora算法,让你在一个消费级别的显卡上,就可以训练thu-chatglm-6b模型。

  • 安装

上面是文件工程,这里开始说安装包,直接使用pip安装

pip install protobuf==3.20.0 transformers icetk cpm_kernels peft

就这么简单,不需要安装别的东西了

  • 推理部分
  1. 推理部分,直接看infer.ipynb代码
  2. 能到这里,也是恭喜你,微调模型已经成功了。这个时候,在这个文件夹下,肯定有一个文件夹叫test003(就是上面output_dir="test003"对应的文件夹)
  3. 在这个文件夹下,你肯定可以看到很多checkpoint-xxx,选择一个你喜欢的(当然,肯定是最好选择最新的)。

3.chatglm_v2_6b_lora

添加了上面的参数,确实可以进行模型并行,但是,这是在chatglm模型代码没有bug的情况下,目前已经定位到bug,并且修复了bug,我也提交PR给chatglm团队,可以点击这个链接查看https://huggingface.co/THUDM/chatglm2-6b/discussions/54#64b542b05c1ffb087056001c

考虑到他们团队效率问题,如果他们还没有修改这个bug,那你们可以自己修改,主要是这么做:

modeling_chatglm.py的第955行代码附近(也就是modeling_chatglm.py/ChatGLMForConditionalGeneration.forwardloss部分):

原始代码:


        loss = None
        if labels is not None:
            lm_logits = lm_logits.to(torch.float32)

            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()   
            shift_labels = labels[..., 1:].contiguous() #<<<------------------看这里
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-100)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

            lm_logits = lm_logits.to(hidden_states.dtype)
            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

修改为:


        loss = None
        if labels is not None:
            lm_logits = lm_logits.to(torch.float32)

            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous().to(shift_logits.device) #<<<--------------------看这里
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-100)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

            lm_logits = lm_logits.to(hidden_states.dtype)
            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

是的,就修改那一行即可

然后就可以正常跑起来了~

  • 下载数据集

ADGEN 数据集任务为根据输入(content)生成一段广告词(summary)。

{
   
   
  "content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
  "summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}

Google Drive
或者 Tsinghua Cloud 下载处理好的 ADGEN
数据集,将解压后的 AdvertiseGen 目录放到本目录下。

  • 硬件要求
  1. 有个3090显卡即可(24G显存左右)
  2. 在下面这个参数下,显存只需要14G
    --max_source_length 64 \
    --max_target_length 128 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \ 
    --lora_r 32
  • 训练脚本
  1. 使用vscode调试,就在.vscode/launch.json里面;
  2. 直接使用sh,sh train.sh
  • 推理
  1. 使用文件:infer_lora.ipynb
  • 使用lora推理
from transformers import AutoTokenizer, AutoModel
from peft import PeftModel, PeftConfig
import torch
import os

os.environ['CUDA_VISIBLE_DEVICES'] = '1'

#原始的模型路径
model_name_or_path = "/media/yuanz/新加卷/训练代码/chatglm6b_v2_0716/chatglm2-6b_model"

#训练后的lora保存的路径
peft_model_id = "output/adgen-chatglm2-6b-lora_version/checkpoint-880"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='auto',
                                  torch_dtype=torch.bfloat16)  # .half().cuda()

model = PeftModel.from_pretrained(model, peft_model_id)
model = model.eval()

response, history = model.chat(tokenizer, "类型#上衣*材质#牛仔布*颜色#白色*风格#简约*图案#刺绣*衣样式#外套*衣款式#破洞",
                               history=[])
print(response)
  • 血的教训
  1. 一定要从huggingface上把chatglm-v2-6b的所有文件都下载下来,放在一个文件夹下;这样即使他更新了,也不会影响到你。如果你不下载,你会很被动😒
  • 相关的BUG

很多人在跑多卡的时候,会遇到一些莫名其妙的错误,建议您按照下面两个步骤进行排查:

  1. 一定要看我上面折叠的那一块东西,就是🚨注意部分。
  2. 检查transformers的版本,如果太低,就更新一下,建议更新:pip install transformers -U

4.中文的dolly_v2_3b模型

  • 训练中文的dolly_v2_3b模型
    1. dolly_v2_3b模型本质上就是使用的gpt_neox模型框架,可以商用,而且也都出来很多年了。
    2. 当前有很多人基于llamagptjchatglm-6b等模型,做了很多微调,有些也都做过了,有些不能商用,有些还要申请,实在是太可惜了,太麻烦了。
    3. 既然dolly_v2_3b可以商用,那我们就主打一个随意,稍微动动手就可以训练一个属于我们的模型。
    4. 本仓库用到的代码,来源于databrickslabs/dolly,对代码做了部分调整和融合。反正就是复制粘贴懂得都懂
    5. 模型叫什么名字:小黑子 😛,已将模型放在https://huggingface.co/yuanzhoulvpi/xiaoheizi-3b
    1. 🎯 支持多卡模型并行:也不知道databrickslabs/dolly为啥要使用gpt_neox模型,这个模型transformers对他支持的其实一般,于是我把代码魔改了一部分,增加了多卡并行计算功能(主要是是模型并行).
    2. 🥱 虽然代码是从databrickslabs/dolly复制的,但是简化了很多不必要的代码,更简单一点,我不喜欢复杂的代码,越简单越好。
    3. 😵 支持bp16:我原本的打算是说支持fp16的,但是发现fp16怎么搞都不行,但是bp16倒是可以。

      下一步优化方向

    4. 😆 添加lora等微调训练代码,这个简单,等后面都训练好了,我添加一下。
  • 模型训练情况

    1. 训练数据:BelleGroup/train_1M_CN
    2. 训练时间:280小时左右
    3. 训练设备:4台3090

5.chinese_bloom

  1. 支持对falcon模型做sft~
  1. ✅ 基于stanford_alpaca项目,使用sft格式数据对bloomfalcon模型微调;
  2. ✅ 支持deepspeed-zero2deepspeed-zero3
  3. ✅ 支持自定义数据,支持大数据训练;
  4. ✅ 得益于bloom本身的能力,微调后的模型支持中文英文代码法语西班牙语等;
  5. ✅ 微调后的模型,中文能力显著提升;
  6. ✅ 支持不同尺寸bloom模型,如560m3b7b13b
  7. ✅ 支持falcon模型,如https://huggingface.co/tiiuae/falcon-7b;
  • 体验
  1. 🎉 在hugginface上部署了一个cpu版本的(有点慢,毕竟是🆓)https://huggingface.co/spaces/yuanzhoulvpi/chinese_bloom_560_chat
  • 模型
  1. bloom模型支持中文英文代码法语西班牙语。具体的训练数据的语言占比如下👇。

  2. bloom-3b: https://huggingface.co/bigscience/bloom-3b

  3. bloom-系列模型: https://huggingface.co/bigscience
  • 数据
  1. 数据来源于BelleGroup,主要是用到这几个数据集:`['BelleGroup/generated_chat_0.4M', 'BelleGroup/school_math_0.25M', 'BelleGroup/train_2M_CN', 'BelleGroup/train_1M_CN',
           'BelleGroup/train_0.5M_CN', 'BelleGroup/multiturn_chat_0.8M']`;
    
  2. 可以基于这些数据样式,制作自己的数据,并训练;
  • 步骤

  • 数据部分

    1. 运行data_proj/process_data.ipynb代码;或者模仿结果,制作自己的数据集;
    2. 运行结束之后,有一个文件夹data_proj/opendata。文件夹下有若干个json格式的文件。
  • 运行模型
  1. 基础运行策略
    sh base_run.sh
    
  2. deepspeed运行策略
    sh ds_all.sh
    
  • 推理代码
  1. infer.ipynb文件
  2. gradio交互界面:https://huggingface.co/spaces/yuanzhoulvpi/chinese_bloom_560_chat 因为是使用的huggingface的免费的cpu版本,所以推理速度比较慢。
  • 效果
    不管是写代码还是写文案,bloom-7b在中文领域有极大的潜力

项目链接:https://github.com/yuanzhoulvpi2017/zero_nlp

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
27天前
|
自然语言处理 算法 Python
自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
【10月更文挑战第9天】自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
43 4
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在自然语言处理中的创新应用
【10月更文挑战第7天】本文将深入探讨人工智能在自然语言处理领域的最新进展,揭示AI技术如何改变我们与机器的互动方式,并展示通过实际代码示例实现的具体应用。
33 1
|
2天前
|
人工智能 自然语言处理 API
探索AI在自然语言处理中的应用
【10月更文挑战第34天】本文将深入探讨人工智能(AI)在自然语言处理(NLP)领域的应用,包括语音识别、机器翻译和情感分析等方面。我们将通过代码示例展示如何使用Python和相关库进行文本处理和分析,并讨论AI在NLP中的优势和挑战。
|
8天前
|
机器学习/深度学习 自然语言处理 知识图谱
GraphRAG在自然语言处理中的应用:从问答系统到文本生成
【10月更文挑战第28天】作为一名自然语言处理(NLP)和图神经网络(GNN)的研究者,我一直在探索如何将GraphRAG(Graph Retrieval-Augmented Generation)模型应用于各种NLP任务。GraphRAG结合了图检索和序列生成技术,能够有效地处理复杂的语言理解和生成任务。本文将从个人角度出发,探讨GraphRAG在构建问答系统、文本摘要、情感分析和自动文本生成等任务中的具体方法和案例研究。
29 5
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
102 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
25天前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
42 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【10月更文挑战第4天】本文将介绍人工智能(AI)在自然语言处理(NLP)领域的应用,包括语音识别、机器翻译、情感分析等方面。我们将通过一些实际案例展示AI如何帮助人们更好地理解和使用自然语言。同时,我们也会探讨AI在NLP领域面临的挑战和未来发展方向。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在自然语言处理中的应用
本文将深入探讨人工智能在自然语言处理领域的应用,包括语音识别、文本挖掘和情感分析等方面。通过实例演示,我们将展示如何利用深度学习技术来提高自然语言处理的准确性和效率。

热门文章

最新文章

下一篇
无影云桌面