C++类成员的访问权限以及类的封装

简介: C++通过 public、protected、private 三个关键字来控制成员变量和成员函数的访问权限,它们分别表示公有的、受保护的、私有的,被称为成员访问限定符。所谓访问权限,就是你能不能使用该类中的成员。Java、C# 程序员注意,C++ 中的 public、private、protected 只能修饰类的成员,不能修饰类,C++中的类没有共有私有之分。在类的内部(定义类的代码内部),无论成员被声明为 public、protected 还是 private,都是可以互相访问的,没有访问权限的限制。在类的外部(定义类的代码之外),只能通过对象访问成员,并且通过对象只能访问 p

C++通过 public、protected、private 三个关键字来控制成员变量和成员函数的访问权限,它们分别表示公有的、受保护的、私有的,被称为成员访问限定符所谓访问权限,就是你能不能使用该类中的成员。

Java、C# 程序员注意,C++ 中的 public、private、protected 只能修饰类的成员,不能修饰类,C++中的类没有共有私有之分。

在类的内部(定义类的代码内部),无论成员被声明为 public、protected 还是 private,都是可以互相访问的,没有访问权限的限制。

在类的外部(定义类的代码之外),只能通过对象访问成员,并且通过对象只能访问 public 属性的成员,不能访问 private、protected 属性的成员。

本节重点讲解 public 和 private,protected 将在继承中讲解。

下面通过一个 Student 类来演示成员的访问权限:

#include <iostream>
    using namespace std;
    //类的声明
    class Student{
    private:  //私有的
        char *m_name;
        int m_age;
        float m_score;
    public:  //共有的
        void setname(char *name);
        void setage(int age);
        void setscore(float score);
        void show();
    };
    //成员函数的定义
    void Student::setname(char *name){
        m_name = name;
    }
    void Student::setage(int age){
        m_age = age;
    }
    void Student::setscore(float score){
        m_score = score;
    }
    void Student::show(){
        cout<<m_name<<"的年龄是"<<m_age<<",成绩是"<<m_score<<endl;
    }
    int main(){
        //在栈上创建对象
        Student stu;
        stu.setname("小明");
        stu.setage(15);
        stu.setscore(92.5f);
        stu.show();
        //在堆上创建对象
        Student *pstu = new Student;
        pstu -> setname("李华");
        pstu -> setage(16);
        pstu -> setscore(96);
        pstu -> show();
        return 0;
    }

运行结果:小明的年龄是15,成绩是92.5李华的年龄是16,成绩是96

类的声明和成员函数的定义都是类定义的一部分,在实际开发中,我们通常将类的声明放在头文件中,而将成员函数的定义放在源文件中。

类中的成员变量 m_name、m_age 和m_ score 被设置成 private 属性,在类的外部不能通过对象访问。也就是说,私有成员变量和成员函数只能在类内部使用,在类外都是无效的。

成员函数 setname()、setage() 和 setscore() 被设置为 public 属性,是公有的,可以通过对象访问。private 后面的成员都是私有的,直到有 public 出现才会变成共有的;public 之后再无其他限定符,所以 public 后面的成员都是共有的。

成员变量大都以m_开头,这是约定成俗的写法,不是语法规定的内容。以m_开头既可以一眼看出这是成员变量,又可以和成员函数中的形参名字区分开。

以 setname() 为例,如果将成员变量m_name的名字修改为name,那么 setname() 的形参就不能再叫name了,得换成诸如name1_name这样没有明显含义的名字,否则name=name;这样的语句就是给形参name赋值,而不是给成员变量name赋值。

因为三个成员变量都是私有的,不能通过对象直接访问,所以必须借助三个 public 属性的成员函数来修改它们的值。下面的代码是错误的:

Student stu;
    //m_name、m_age、m_score 是私有成员变量,不能在类外部通过对象访问
    stu.m_name = "小明";
    stu.m_age = 15;
    stu.m_score = 92.5f;
    stu.show();

简单地谈类的封装

private 关键字的作用在于更好地隐藏类的内部实现,该向外暴露的接口(能通过对象访问的成员)都声明为 public,不希望外部知道、或者只在类内部使用的、或者对外部没有影响的成员,都建议声明为 private。

根据C++软件设计规范,实际项目开发中的成员变量以及只在类内部使用的成员函数(只被成员函数调用的成员函数)都建议声明为 private,而只将允许通过对象调用的成员函数声明为 public。

另外还有一个关键字 protected,声明为 protected 的成员在类外也不能通过对象访问,但是在它的派生类内部可以访问,这点我们将在后续章节中介绍,现在你只需要知道 protected 属性的成员在类外无法访问即可。

有读者可能会提出疑问,将成员变量都声明为 private,如何给它们赋值呢,又如何读取它们的值呢?

我们可以额外添加两个 public 属性的成员函数,一个用来设置成员变量的值,一个用来获取成员变量的值。上面的代码中,setname()、setage()、setscore() 函数就用来设置成员变量的值;如果希望获取成员变量的值,可以再添加三个函数 getname()、getage()、getscore()。

给成员变量赋值的函数通常称为 set 函数,它们的名字通常以set开头,后跟成员变量的名字;读取成员变量的值的函数通常称为 get 函数,它们的名字通常以get开头,后跟成员变量的名字。

除了 set 函数和 get 函数,在创建对象时还可以调用构造函数来初始化各个成员变量,我们将在《C++构造函数》一节中展开讨论。

不过构造函数只能给成员变量赋值一次,以后再修改还得借助 set 函数。这种将成员变量声明为 private、将部分成员函数声明为 public 的做法体现了类的封装性。

所谓封装,是指尽量隐藏类的内部实现,只向用户提供有用的成员函数。

有读者可能会说,额外添加 set 函数和 get 函数多麻烦,直接将成员变量设置为 public 多省事!确实,这样做 99.9% 的情况下都不是一种错误,我也不认为这样做有什么不妥;但是,将成员变量设置为 private 是一种软件设计规范,尤其是在大中型项目中,还是请大家尽量遵守这一原则。

为了减少代码量,方便说明问题,本教程中的类可能会将成员变量设置为 public,请读者不要认为这是一种错误。

对private和public的更多说明

声明为 private 的成员和声明为 public 的成员的次序任意,既可以先出现 private 部分,也可以先出现 public 部分。如果既不写 private 也不写 public,就默认为 private。

在一个类体中,private 和 public 可以分别出现多次。每个部分的有效范围到出现另一个访问限定符或类体结束时(最后一个右花括号)为止。但是为了使程序清晰,应该养成这样的习惯,使每一种成员访问限定符在类定义体中只出现一次。

下面的类声明也是完全正确的:

class Student{
    private:
        char *m_name;
    private:
        int m_age;
        float m_score;
    public:
        void setname(char *name);
        void setage(int age);
    public:
        void setscore(float score);
        void show();
    };
相关文章
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
90 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
169 0
|
5月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
176 12
|
6月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
6月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
128 16
|
7月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
6月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
6月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
6月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
345 6