栈和队列的实现以及OJ题讲解

简介: 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。

栈的概念以及结构

栈的概念

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端

称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。


栈的结构

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。

出栈:栈的删除操作叫做出栈。出数据也在栈顶。

0ffc87835a6b42d09df97ab7f70d7447.png

f2e5945d484a4dd2b0331dd2fa99ea26.png

知道了栈的概念以及结构,接下来我们来实现一下栈。


栈的实现

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的

代价比较小。我们这里实现数组栈。

369e31e207584a36b9524664692f168d.png

结构:

typedef int STDateType;
typedef struct Stack
{
  STDateType* arr;
  int top;
  int capacity;
}Stack;

栈的接口

// 初始化栈
void StackInit(Stack* ps);
// 入栈
void StackPush(Stack* ps, STDateType x);
// 出栈
void StackPop(Stack* ps);
// 获取栈顶元素
STDateType StackTop(Stack* ps);
// 获取栈中有效元素个数
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
bool StackEmpty(Stack* ps);
// 销毁栈
void StackDestroy(Stack* ps);

各个接口的实现

有了顺序表的基础,栈与其相比就太简单了。大家直接看代码就知道了:

// 初始化栈
void StackInit(Stack* ps)
{
  assert(ps);
  ps->arr = NULL;
  ps->capacity = 0;
  ps->top = 0;
}
// 入栈
void StackPush(Stack* ps, STDateType x)
{
  assert(ps);
  if (ps->top == ps->capacity)
  {
    int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
    STDateType* pa = (STDateType*)realloc(ps->arr, newcapacity * sizeof(STDateType));
    if (ps == NULL)
    {
      perror("realloc fail");
      exit(-1);
    }
    ps->arr = pa;
    ps->capacity = newcapacity;
  }
  ps->arr[ps->top] = x;
  ps->top++;
}
// 出栈
void StackPop(Stack* ps)
{
  assert(ps);
  assert(ps ->top > 0);
  ps->top--;
}
// 获取栈顶元素
STDateType StackTop(Stack* ps)
{
  assert(ps);
  return ps->arr[ps->top - 1];
}
// 获取栈中有效元素个数
int StackSize(Stack* ps)
{
  assert(ps);
  return ps->top;
}
// 检测栈是否为空
bool StackEmpty(Stack* ps)
{
  assert(ps);
  return ps->top == 0 ? true : false;
}
// 销毁栈
void StackDestroy(Stack* ps)
{
  assert(ps);
  free(ps->arr);
  ps->arr = NULL;
  ps->capacity = 0;
  ps->top = 0;
}

队列的概念和结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头。

ad96353a796e4431b5d8491e8249f91f.png

队列的结构

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低。所以我们用链表来实现队列。

typedef int QDataType;
typedef struct QNode
{
  QDataType date;
  struct QNode* next;
}QNode;
typedef struct Queue
{
  QNode* head;
  //记录尾,方便入队
  QNode* tail;
  //记录队列里有效数据的个数
  int size;
}Queue;

队列的实现

队列的接口

//初始化队列
void QueueInit(Queue* pq);
//入队列
void QueuePush(Queue* pq, QDataType x);
//出队列
void QueuePop(Queue* pq);
//获取队头的元素
QDataType QueueFront(Queue* pq);
//获取队头尾的元素
QDataType QueueBack(Queue* pq);
//获取队列中有效数据的个数
int QueueSize(Queue* pq);
//判断队列是否为空
bool QueueEmpty(Queue* pq);
//销毁队列
void QueuDestroy(Queue* pq);

接口的实现

//初始化队列
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = NULL;
  pq->tail = NULL;
  pq->size = 0;
}
//入队列
void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
  newnode->date = x;
  newnode->next = NULL;
  if (pq->head == NULL)
  {
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = newnode;
  }
  pq->size++;
}
//出队列
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* next = pq->head->next;
    free(pq->head);
    pq->head = next;
  } 
  pq->size--;
}
//获取队头的元素
QDataType QueueFront(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  return pq->head->date;
}
//获取队头尾的元素
QDataType QueueBack(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  return pq->tail->date;
}
//获取队列中有效数据的个数
int QueueSize(Queue* pq)
{
  assert(pq);
  return pq->size;
}
//判断队列是否为空
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->size == 0;
}
//销毁队列
void QueuDestroy(Queue* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
}

有效的括号

33b06253c2674cc5a7cfb8ed67fde258.png

这个题放在这里讲,它一定是需要用到栈的,但是由于我们的C语言没有栈,所以我们写这个题时需要手写一个栈,我们这里说一下思路,括号匹配,我们可以将左括号入栈,然后碰到右括号然后保存栈顶的元素,然后出栈,然后看是否匹配,匹配的情况我们不关心,但是只要不匹配我们就返回false,但是每次是右括号是我们都要判断是不是空栈,如果是空栈,就一定不匹配,这是我们要返回false,等字符串遍历完一遍后,如果不是空栈,就一定不匹配,返回false,但是如果字符串遍历完了,是空栈,就一定匹配,返回true,注意在返回之前一定要销毁栈。


代码:

typedef char STDateType;
typedef struct Stack
{
  STDateType* arr;
  int top;
  int capacity;
}Stack;
// 初始化栈
void StackInit(Stack* ps)
{
  assert(ps);
  ps->arr = NULL;
  ps->capacity = 0;
  ps->top = 0;
}
// 入栈
void StackPush(Stack* ps, STDateType x)
{
  assert(ps);
  if (ps->top == ps->capacity)
  {
    int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
    STDateType* pa = (STDateType*)realloc(ps->arr, newcapacity * sizeof(STDateType));
    if (ps == NULL)
    {
      perror("realloc fail");
      exit(-1);
    }
    ps->arr = pa;
    ps->capacity = newcapacity;
  }
  ps->arr[ps->top] = x;
  ps->top++;
}
// 出栈
void StackPop(Stack* ps)
{
  assert(ps);
  assert(ps ->top > 0);
  ps->top--;
}
// 获取栈顶元素
STDateType StackTop(Stack* ps)
{
  assert(ps);
  return ps->arr[ps->top - 1];
}
// 获取栈中有效元素个数
int StackSize(Stack* ps)
{
  assert(ps);
  return ps->top;
}
// 检测栈是否为空
bool StackEmpty(Stack* ps)
{
  assert(ps);
  return ps->top == 0 ? true : false;
}
// 销毁栈
void StackDestroy(Stack* ps)
{
  assert(ps);
  free(ps->arr);
  ps->arr = NULL;
  ps->capacity = 0;
  ps->top = 0;
}
bool isValid(char * s)
{
    Stack st;
    StackInit(&st);
    char top = 0;
    while(*s)
    {
        if(*s=='('||*s=='{'||*s=='[')
        {
            StackPush(&st,*s);
        }
        else
        {
            //数量不匹配
            if(StackEmpty(&st))
            {
                StackDestroy(&st);
                return false;
            }
            else
            {
                top = StackTop(&st);
                StackPop(&st);
                //判断是否匹配
                if((top=='['&&*s!=']')
                  ||top=='('&&*s!=')'
                  ||top=='{'&&*s!='}')
                {
                    StackDestroy(&st);
                    return false;
                }
            }
        }
        *s++;
    }
    //判断数量是否匹配
    if(!StackEmpty(&st))
    {
        StackDestroy(&st);
        return false;
    }
    StackDestroy(&st);
    return true;
}


相关文章
|
5月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
150 1
|
3月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
42 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
7月前
|
算法 调度 C++
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
149 11
|
7月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
10月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
855 9
|
10月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
213 59
|
8月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
329 77
|
8月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
236 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
8月前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
130 9