Anaconda Conda实现Python多环境管理

简介: Conda是Anaconda发行版的核心组件之一,可以用于在同一个机器上安装不同Python版本,可以帮助创建、管理和切换不同的软件环境,以及安装和更新各种软件包和依赖项。

Python多环境

Python多环境指的是在同一台计算机上同时安装并管理多个不同的Python版本。可以在不同版本的Python之间切换,并确保每个项目都使用其所需的特定Python版本。对于处理不同的项目和应用程序可能需要的Python版本差异非常有用。

Python多环境和Python虚拟环境是两个相关概念,用于管理不同的Python版本和环境。可参考:
Python虚拟环境

Anaconda

Anaconda是一个流行的开源Python发行版,主要用于数据科学、机器学习和科学计算。它包含了一系列常用的Python软件包、工具和库,以及一个强大的环境管理系统(conda)。

Anaconda的主要特点和组件包括:

Python发行版:Anaconda集成了Python解释器,可以方便地运行Python程序。

Conda环境管理:Anaconda使用conda作为其环境管理系统。你可以使用conda创建、管理和切换不同的环境,每个环境可以独立配置不同的Python版本和软件包。

软件包管理:Anaconda提供了一个广泛的软件包仓库,其中包含了众多常用的数据科学、机器学习和科学计算的工具、库和依赖项。你可以使用conda命令方便地安装和管理这些软件包。

集成工具:Anaconda提供了一些常用的集成开发环境(IDE),如Jupyter Notebook、Spyder等,可以提供更方便的开发和交互环境。

跨平台支持:Anaconda可以在多个操作系统(如Windows、Linux和MacOS)上运行,并提供相应的安装包和依赖项。

Anaconda的目标是简化Python的安装和管理,使数据科学家和开发人员能够更轻松地配置工作环境并开始开发。它广泛使用于数据科学社区和机器学习领域,因为它提供了方便且全面的工具和库集合,能够大大加速和简化项目的搭建和开发过程。

Conda环境管理

conda是一个用于数据科学与机器学习的开源软件包管理系统和环境管理系统。它是Anaconda发行版的核心组件之一,可以用于在同一个机器上安装不同Python版本,可以帮助创建、管理和切换不同的软件环境,以及安装和更新各种软件包和依赖项。

官网下载:https://repo.anaconda.com/
image.png

选择Miniconda最小方式安装,包括Conda、Python等基本依赖项

下载安装

1.Shell脚本:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

2.Windows程序:

https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

核心重点是在Linux服务器安装

执行命令安装,并按照提示操作

bash Miniconda3-latest-Linux-x86_64.sh

执行命令后,阅读条款,使用ENTER键阅读

# 同意许可条款
Do you accept the license terms? [yes|no]
[no] >>> yes

# 回车键使用默认安装路径:/root/miniconda3  或者 输入安装路径
Miniconda3 will now be installed into this location:
/root/miniconda3

  - Press ENTER to confirm the location
  - Press CTRL-C to abort the installation
  - Or specify a different location below

[/root/miniconda3] >>> /usr/local/program/miniconda3
PREFIX=/usr/local/program/miniconda3
Unpacking payload ...

Installing base environment...


Downloading and Extracting Packages


Downloading and Extracting Packages

Preparing transaction: done
Executing transaction: done
installation finished.

# 是否初始化
Do you wish the installer to initialize Miniconda3
by running conda init? [yes|no]
[no] >>> yes
no change     /usr/local/program/miniconda3/condabin/conda
no change     /usr/local/program/miniconda3/bin/conda
no change     /usr/local/program/miniconda3/bin/conda-env
no change     /usr/local/program/miniconda3/bin/activate
no change     /usr/local/program/miniconda3/bin/deactivate
no change     /usr/local/program/miniconda3/etc/profile.d/conda.sh
no change     /usr/local/program/miniconda3/etc/fish/conf.d/conda.fish
no change     /usr/local/program/miniconda3/shell/condabin/Conda.psm1
no change     /usr/local/program/miniconda3/shell/condabin/conda-hook.ps1
no change     /usr/local/program/miniconda3/lib/python3.11/site-packages/xontrib/conda.xsh
no change     /usr/local/program/miniconda3/etc/profile.d/conda.csh
modified      /root/.bashrc

==> For changes to take effect, close and re-open your current shell. <==

If you'd prefer that conda's base environment not be activated on startup,
   set the auto_activate_base parameter to false:

conda config --set auto_activate_base false

# 安装完成标志
Thank you for installing Miniconda3!

注意:Miniconda安装完成后,每次打开终端都会激活其默认的base环境

自动进入base环境

(base) [root@node01 ~]# python
Python 3.11.4 (main, Jul  5 2023, 13:45:01) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

禁止激活默认base环境

[root@node01 ~]# conda config --set auto_activate_base false
-bash: conda: 未找到命令
[root@node01 ~]# source .bashrc
(base) [root@node01 ~]#  conda config --set auto_activate_base false

镜像配置

配置conda国内镜像,可选操作

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

执行conda命令时显示使用的channel的URL

conda config --set show_channel_urls yes

查看conda的镜像channel配置

# conda config --show channels
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - defaults

删除镜像,使用默认的

conda config --remove-key channels

环境管理常用命令

创建环境

conda create -n env_name

查看所有环境

conda info --envs

删除一个环境

conda remove -n env_name --all

激活环境

conda activate env_name

退出当前环境

conda deactivate

创建Python3.10环境

创建demo环境

conda create --name demo python=3.10.9

激活环境,并查看Python版本

(base) [root@node01 ~]# conda activate superset
(demo) [root@node01 ~]# python -V
Python 3.10.9

退出当前环境

conda deactivate
相关文章
|
7月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
532 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
7月前
|
Python
在VScode环境下配置Python环境的方法
经过上述步骤,你的VSCode环境就已经配置好了。请尽情享受这扇你为自己开启的知识之窗。如同你在冒险世界中前行,你的探索之路只有越走越广,你获得的知识只会越来越丰富,你的能力只会越来越强。
712 37
|
9月前
|
机器学习/深度学习 数据采集 数据可视化
Python/Anaconda双方案加持!Jupyter Notebook全平台下载教程来袭
Jupyter Notebook 是一款交互式编程与数据科学分析工具,支持40多种编程语言,广泛应用于机器学习、数据清洗和学术研究。其核心优势包括实时执行代码片段、支持Markdown文档与LaTeX公式混排,并可导出HTML/PDF/幻灯片等格式。本文详细介绍了Jupyter Notebook的软件定位、特性、安装方案(Anaconda集成环境与原生Python+PIP安装)、首次运行配置及常见问题解决方案,帮助用户快速上手并高效使用该工具。
|
11月前
|
Shell Linux Ruby
Python3虚拟环境venv
`venv` 是 Python 的虚拟环境工具,用于为不同项目创建独立的运行环境,避免依赖冲突。通过 `python3 -m venv` 命令创建虚拟环境,并使用 `source bin/activate` 激活。激活后,所有 Python 包将安装在该环境中,不影响系统全局环境。退出环境使用 `deactivate` 命令。每个虚拟环境拥有独立的包集合,确保项目间的隔离性。删除虚拟环境只需删除其目录即可。
1056 34
|
9月前
|
Java API Docker
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
|
11月前
|
人工智能 Java Python
python安装、vscode安装、conda安装:一文搞定Python的开发环境(史上最全)
尼恩架构团队推出了一系列《LLM大模型学习圣经》PDF,旨在帮助读者深入理解并掌握大型语言模型(LLM)及其相关技术。该系列包括Python基础、Transformer架构、LangChain框架、RAG架构及LLM智能体等内容,覆盖从理论到实践的各个方面。此外,尼恩还提供了配套视频教程,计划于2025年5月前发布,助力更多人成为大模型应用架构师,冲击年薪百万目标。
|
11月前
|
SQL 分布式计算 数据处理
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
282 1
|
11月前
|
Shell 程序员 开发者
轻松搞定在Python中构建虚拟环境
本教程教你如何使用业界公认的最佳实践,创建一个完全工作的Python开发环境。虚拟环境通过隔离依赖项,避免项目间的冲突,并允许你轻松管理包版本。我们将使用Python 3的内置`venv`模块来创建和激活虚拟环境,确保不同项目能独立运行,不会相互干扰。此外,还将介绍如何检查Python版本、激活和停用虚拟环境,以及使用`requirements.txt`文件共享依赖项。 通过本教程,你将学会: - 创建和管理虚拟环境 - 避免依赖性冲突 - 部署Python应用到服务器 适合新手和希望提升开发环境管理能力的开发者。
735 2
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
312 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
340 104

推荐镜像

更多