3.3 增加冗余字段
设计数据库表时应尽量遵循范式理论的规约,尽可能减少冗余字段,让数据库设计看起来精致、优雅。但是,合理地加入冗余字段可以提高查询速度。
表的规范化程度越高,表与表之间的关系就越多,需要连接查询的情况也就越多。尤其在数据量大,而且需要频繁进行连接的时候,为了提升效率,我们也可以考虑增加冗余字段来减少连接。
这部分内容在《第11章_数据库的设计规范》章节中 反范式化小节 中具体展开讲解了。这里省略。
3.4优化数据类型
改进表的设计时,可以考虑优化字段的数据类型。这个问题在大家刚从事开发时基本不算是问题。但是,随着你的经验越来越丰富,参与的项目越来越大,数据量也越来越多的时候,你就不能只从系统稳定性的角度来思考问题了,还要考虑到系统整体的稳定性和效率。此时,优先选择符合存储需要的最小的数据类型。
列的字段越大
,建立索引时所需要的空间也就越大
,这样一页中所能存储的索引节点的数量就越少
,在遍历时所需要的IO次数也就越多
,索引的性能也就越差
。
具体来说:
情况1:对整数类型数据进行优化。
遇到整数类型的字段可以用 INT 型 。这样做的理由是,INT 型数据有足够大的取值范围,不用担心数据超出取值范围的问题。刚开始做项目的时候,首先要保证系统的稳定性,这样设计字段类型是可以的。但在数据量很大的时候,数据类型的定义,在很大程度上会影响到系统整体的执行效率。
对于 非负型 的数据(如自增ID、整型IP)来说,要优先使用无符号整型 UNSIGNED 来存储。因为无符号相对于有符号,同样的字节数,存储的数值范围更大。如tinyint有符号为-128-127,无符号为0-255,多出一倍的存储空间。
情况2:既可以使用文本类型也可以使用整数类型的字段,要选择使用整数类型。
跟文本类型数据相比,大整数往往占用 更少的存储空间
,因此,在存取和比对的时候,可以占用更少的内存空间。所以,在二者皆可用的情况下,尽量使用整数类型,这样可以提高查询的效率。如:将IP地址转换成整型数据。
情况3:避免使用TEXT、BLOB数据类型
MySQL内存临时表
不支持TEXT、BLOB这样的大数据类型,如果查询中包含这样的数据,在排序等操作时,就不能使用内存临时表,必须使用磁盘临时表进行。并且对于这种数据,Mysql还是要进行二次查询,会使SQL性能变得很差,但是不是说一定不能使用这样的数据类型。
如果一定要使用,建议把BLOB或是TEXT列分离到单独的扩展表中,查询时一定不要使用select *,而只需要取出必要的列,不需要TEXT列的数据时不要对该列进行查询。
情况4∶避免使用ENUM类型
修改ENUM值需要使用ALTER语句。
ENUN类型的ORDER BY操作效率低,需要额外操作。使用TINYINT来代替ENUM类型。
情况5:使用TIMESTAMP存储时间
TIMESTAMP存储的时间范围1970-01-0100:00:01~ 2038-01-19-03:14:07。TIMESTAMP使用4字节,DATETIME使用8个字节,同时TIMESTAN1P具有自动赋值以及自动更新的特性
情况6:用DECIMAL代替FLOAT和DOUBLE存储精确浮点数
1)非精准浮点: float,double
2)精准浮点: decimal
Decimal类型为精准浮点数,在计算时不会丢失精度,尤其是财务相关的金融类数据。占用空间由定义的宽度决定,每4个字节可以存储3位数字,并且小数点要占用一个字节。可用于存储比bigint更大的整型数据
总之,遇到数据量大的项目时,一定要在充分了解业务需求的前提下,合理优化数据类型,这样才能充分发挥资源的效率。使系统达到最优
3.5 优化插入记录的速度
插入记录时,影响插入速度的主要是索引、唯一性校验、一次插入记录条数等。根据这些情况可以分别进行优化。这里我们分为MyISAM存储引擎和InnoDB存储引擎来讲。
1. MyISAM引擎的表
① 禁用索引
对于非空表,插入记录时,MySQL会根据表的索引对插入的记录建立索引。如果插入大量数据,建立索引就会降低插入记录的速度。为了解决这种情况,可以在插入记录之前禁用索引,数据插入完毕后再开启索引。禁用索引的语句如下:
ALTER TABLE table_name DISABLE KEYS;
重新开启索引的语句如下:
ALTER TABLE table_name ENABLE KEYS;
若对于空表批量导入数据,则不需要进行此操作,因为MyISAM引擎的表是在导入数据之后才建立索引的
②禁用唯一性检查
插入数据时,MySQL会对插入的记录进行唯一性校验。这种唯一性校验会降低插入记录的速度。为了降低这种情况对查询速度的影响,可以在插入记录之前禁用唯一性检合,等到记录插入完毕后再开启。禁用唯一性检查的语句如下:
SET UNIQUE_GHECKS=0;
开启唯一性检查的语句如下:
SET UNIQUE_GHECKS=1;
③使用批量插入
插入多条记录时,可以使用一条INSERT语句插入一条记录,也可以使用一条INSERT语句插入多条记录。插入一条记录的INSERT语句情形如下:
insert into student values(1,'zhangsan',18,1); insert into student values(2,'lisi',17,1); insert into student values(3,'wangwu',17,1); insert into student values(4,'zhaoliu',19,1);
使用一条INSERT语句插入多条记录的情形如下:
insert into student values (1,'zhangsan',18,1), (2,'lisi',17,1), (3,'wangwu',17,1), (4,'zhaoliu',19,1);
第2种情形的插入速度要比第1种情形快。
④ 使用LOAD DATA INFILE 批量导入
当需要批量导入数据时,如果能用LOAD DATA INFILE语句,就尽量使用。因为LOAD DATA INFILE语句导入数据的速度比INSERT语句快。
2. InnoDB引擎的表:
① 禁用唯一性检查
插入数据之前执行 set unique_checks=0
来禁止对唯一索引的检查,数据导入完成之后再运行set unique_checks=1
。这个和MyISAM引擎的使用方法一样。
② 禁用外键检查
插入数据之前执行禁止对外键的检查,数据插入完成之后再恢复对外键的检查。禁用外键检查的语句如下;
SET foreign_key_checks=0;
恢复对外键的检查语句如下:
SET foreign_key_checks=1;
③ 禁止自动提交
插入数据之前禁止事务的自动提交,数据导入完成之后,执行恢复自动提交操作。禁止自动提交的语句如下:
set autocommit=0;
恢复自动提交的语句如下:
set autocommit=1;
3.6 使用非空约束
在设计字段的时候,如果业务允许,建议尽量使用非空约束。这样做的好处是:
①进行比较和计算时,省去要对NULL值的字段判断是否为空的开销,提高存储效率。
②非空字段也容易创建索引。因为索引NULL列需要额外的空间来保存,所以要占用更多的空间。使用非空约束,就可以节省存储空间(每个字段1个bit)
3.7分析表、检查表与优化表
MySQL提供了分析表、检查表和优化表的语句。分析表
主要是分析关键字的分布,检查表
主要是检查表是否存在错误,优化表
主要是消除删除或更新造成的空间浪费。
1.分析表
MySQL中提供了ANALYZE TABLE语句分析表,ANALYZE TABLE语句的基本语法如下:
ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name[,tbl_name]…
默认的,MySQL服务会将 ANALYZE TABLE语句写到binlog中,以便在主从架构中,从服务能够同步数据。可以添加参数LOCAL 或者 NO_WRITE_TO_BINLOG取消将语句写到binlog中。
使用 ANALYZE TABLE 分析表的过程中,数据库系统会自动对表加一个 只读锁 。在分析期间,只能读取表中的记录,不能更新和插入记录。ANALYZE TABLE语句能够分析InnoDB和MyISAM类型的表,但是不能作用于视图。
ANALYZE TABLE分析后的统计结果会反应到 cardinality 的值,该值统计了表中某一键所在的列不重复的值的个数。**该值越接近表中的总行数,则在表连接查询或者索引查询时,就越优先被优化器选择使用。**也就是索引列的cardinality的值与表中数据的总条数差距越大,即使查询的时候使用了该索引作为查询条件,存储引擎实际查询的时候使用的概率就越小。下面通过例子来验证下。cardinality可以通过SHOW INDEX FROM 表名查看。
下面我们举例说明,使用下面的语句创建一张user表。
演示
#08-数据库的其他优化策略 CREATE TABLE `user1` ( `id` INT NOT NULL AUTO_INCREMENT, `name` VARCHAR(255) DEFAULT NULL, `age` INT DEFAULT NULL, `sex` VARCHAR(255) DEFAULT NULL, PRIMARY KEY (`id`), KEY `idx_name` (`name`) USING BTREE ) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb3; ####### SET GLOBAL log_bin_trust_function_creators = 1; DELIMITER // CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11) BEGIN DECLARE i INT DEFAULT 0; SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ; RETURN i; END // DELIMITER ; ### DELIMITER // CREATE PROCEDURE insert_user( max_num INT ) BEGIN DECLARE i INT DEFAULT 0; SET autocommit = 0; REPEAT SET i = i + 1; INSERT INTO `user1` ( NAME,age,sex ) VALUES ("atguigu",rand_num(1,20),"male"); UNTIL i = max_num END REPEAT; COMMIT; END // DELIMITER; ## CALL insert_user(1000); SHOW INDEX FROM user1; SELECT * FROM user1; UPDATE user1 SET NAME = 'atguigu03' WHERE id = 3; #分析表 ANALYZE TABLE user1; #检查表 CHECK TABLE user1; #优化表 CREATE TABLE t1(id INT,NAME VARCHAR(15)) ENGINE = MYISAM; OPTIMIZE TABLE t1; CREATE TABLE t2(id INT,NAME VARCHAR(15)) ENGINE = INNODB; OPTIMIZE TABLE t2; #### CREATE TABLESPACE atguigu1 ADD DATAFILE 'atguigu1.ibd' file_block_size=16k; CREATE TABLE test(id INT,NAME VARCHAR(10)) ENGINE=INNODB DEFAULT CHARSET utf8mb4 TABLESPACE atguigu1; ALTER TABLE test TABLESPACE atguigu1; DROP TABLESPACE atguigu1; DROP TABLE test;
2. 检查表
MySQL中可以使用 CHECK TABLE
语句来检查表。CHECK TABLE语句能够检查InnoDB和MyISAM类型的表是否存在错误。CHECK TABLE语句在执行过程中也会给表加上 只读锁
。
对于MyISAM类型的表,CHECK TABLE语句还会更新关键字统计数据。而且,CHECK TABLE也可以检查视图是否有错误,比如在视图定义中被引用的表已不存在。该语句的基本语法如下:
CHECK TABLE tbl_name [, tbl_name] ... [option] ... option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}
其中,tbl_name是表名;option参数有5个取值,分别是QUICK、FAST、MEDIUM、EXTENDED和CHANGED。各个选项的意义分别是:
QUICK :不扫描行,不检查错误的连接。
FAST :只检查没有被正确关闭的表。
CHANGED :只检查上次检查后被更改的表和没有被正确关闭的表。
MEDIUM :扫描行,以验证被删除的连接是有效的。也可以计算各行的关键字校验和,并使用计算出的校验和验证这一点。
EXTENDED :对每行的所有关键字进行一个全面的关键字查找。这可以确保表是100%一致的,但是花的时间较长。
option只对MyISAM类型的表有效,对InnoDB类型的表无效。比如:
该语句对于检查的表可能会产生多行信息。最后一行有一个状态的 Msg_type 值,Msg_text 通常为 OK。如果得到的不是 OK,通常要对其进行修复;是 OK 说明表已经是最新的了。表已经是最新的,意味着存储引擎对这张表不必进行检查。
3. 优化表
方式1:OPTIMIZE TABLE
MySQL中使用 OPTIMIZE TABLE 语句来优化表。但是,OPTILMIZE TABLE语句只能优化表中的VARCHAR 、 BLOB 或 TEXT 类型的字段。一个表使用了这些字段的数据类型,若已经 删除 了表的一大部分数据,或者已经对含有可变长度行的表(含有VARCHAR、BLOB或TEXT列的表)进行了很多 更新 ,则应使用OPTIMIZE TABLE来重新利用未使用的空间,并整理数据文件的 碎片
OPTIMIZE TABLE 语句对InnoDB和MyISAM类型的表都有效。该语句在执行过程中也会给表加上 只读锁
OPTILMIZE TABLE语句的基本语法如下:
OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...
LOCAL | NO_WRITE_TO_BINLOG关键字的意义和分析表相同,都是指定不写入二进制日志。
执行完毕,Msg_text显示
‘numysql.SYS_APP_USER’, ‘optimize’, ‘note’, ‘Table does not support optimize, doing recreate +analyze instead’
原因是我服务器上的MySQL是InnoDB存储引擎。
到底优化了没有呢?看官网!
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
在MyISAM中,是先分析这张表,然后会整理相关的MySQL datafile,之后回收未使用的空间;在InnoDB中,回收空间是简单通过Alter table进行整理空间。在优化期间,MySQL会创建一个临时表,优化完成之后会删除原始表,然后会将临时表rename成为原始表。
说明: 在多数的设置中,根本不需要运行OPTIMIZE TABLE。即使对可变长度的行进行了大量的更新,也不需要经常运行, 每周一次 或 每月一次 即可,并且只需要对 特定的表 运行。
举例:
1.新建一张表,使用存储过程往里面放入100W数据,或者更多一些,争取能够以兆的单位显示 2.查看服务器上数据文件的大小,文件目录是/var/1ib/mysq1/所在的数据库 3.删除二分之一的数据,然后再查看当前数据文件的大小,会发现此时大小是不变的 4.使用OPTIMIZE table表名;命令优化表 5.再查看当前数据文件的大小,会发现此时大小已经变化了,做了空间的回收
优化前:
优化后:
方式2:使用mysqlcheck命令
mysqlcheck -o DatabaseName TableName -u root -p******
mysqlcheck是Linux中的rompt,-o是代表optimize。
举例:优化所有的表
mysqlcheck -o DatabaseName -u root -p****** #或 mysqlcheck -o --all-databases -u root -p******
3.8 小结
上述这些方法都是有利有弊的。比如:
- 修改数据类型,节省存储空间的同时,你要考虑到数据不能超过取值范围;
- 增加冗余字段的时候,不要忘了确保数据一致性;
- 把大表拆分,也意味着你的查询会增加新的连接,从而增加额外的开销和运维的成本。
因此,你一定要结合实际的业务需求进行权衡。