第08章 索引的创建与设计原则【2.索引及调优篇】【MySQL高级】1

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 第08章 索引的创建与设计原则【2.索引及调优篇】【MySQL高级】1

前言


2022/8/2 19:42


暑假学习ing


推荐

【MySQL数据库教程天花板,mysql安装到mysql高级,强!硬!-哔哩哔哩】

尚硅谷MySQL学习笔记

MySQL笔记:第08章_索引的创建与设计原则

第08章 索引的创建与设计原则

1. 索引的声明与使用

1.1 索引的分类

MySQL的索引包括普通索引、唯一性索引、全文索引、单列索引、多列索引和空间索引等。

  • 功能逻辑上说,索引主要有4种,分别是普通索引、唯一索引、主键索引、全文索引
  • 按照物理实现方式,索引可以分为2种:聚簇索引和非聚簇索引
  • 按照作用字段个数进行划分,分成单列索引和联合索引
    1.普通索引
    在创建普通索引时,不附加任何限制条件,只是用于提高查询效率。这类索引可以创建在任何数据类型中,其值是否唯一和非空,要由字段本身的完整性约束条件决定。建立索引以后,可以通过索引进行查询。例如,在表student的字段name上建立一个普通索引,查询记录时就可以根据该索引进行查询。
    2.唯一性索引

使用UNIQUE参数可以设置索引为唯一性索引,在创建唯一性索引时,限制该索引的值必须是唯一的,但允许有空值。在一张数据表里可以有多个唯一索引。
例如,在表student的字段email中创建唯一性索引,那么字段email的值就必须是唯一的。通过唯一性索引,可以更快速地确定某条记录。
3.主键索引

主键索引就是一种特殊的唯一性索引,在唯一索引的基础上增加了不为空的约束,也就是NOT NULL+UNIQUE,一张表里最多只有一个主键索引。
Why?这是由主键索引的物理实现方式决定的,因为数据存储在文件中只能按照一种顺序进行存储
4.单列索引

在表中的单个字段上创建索引。单列索引只根据该字段进行索引。单列索引可以是普通索引,也可以是唯一性索引,还可以是全文索引。只要保证该索引只对应一个字段即可。一个表可以有多个单列索引。
5.多列(组合、联合)索引
多列索引是在表的多个字段组合上创建一个索引。该索引指向创建时对应的多个字段,可以通过这几个字段进行查询,但是只有查询条件中使用了这些字段中的第一个字段时才会被使用。例如,在表中的字段id、name和gender上建立一个多列索引idx_id_name_pender ,只有在查询条件中使用了字段id时该索引才会被使用。使用组合索引时遵循 最左前缀集合。

6.全文索引
全文索引(也称全文检索〉是目前搜索引擎使用的一种关键技术。它能够利用【分词技术】等多种算法智能分析出文本文字中关键词的频率和重要性,然后按照一定的算法规则智能地筛选出我们想要的搜索结果。全文索引非常适合大型数据集,对于小的数据集,它的用处比较小。
使用参数FULLTEXT可以设置索引为全文索引。在定义索引的列上支持值的全文查找,允许在这些索引列中插入重复值和空值。全文索引只能创建在CHARVARCHARTEXT类型及其系列类型的字段上,查询数据量较大的字符串类型的字段时,使用全文索引可以提高查询速度。例如,表student的字段informationTEXT类型,该字段包含了很多文字信息。在字段information上建立全文索引后,可以提高查询字段information的速度
全文索引典型的有两种类型:自然语言的全文索引和布尔全文索引。

  • 自然语言搜索引擎将计算每一个文档对象和查询的相关度。这里,相关度是基于匹配的关键词的个数,以及关键词在文档中出现的次数。在整个索引中出现次数越少的词语,匹配时的相关度就越高。相反,非常常见的单词将不会被搜索,如果一个词语在超过50%的记录中都出现了,那么自然语言的搜索将不会搜索这类词语
    MySQL数据库从3.23.23版开始支持全文索引,但MySQL5.6.4以前只有Myisam支持,5.6.4版本以后innodb才支持,但是官方版本不支持中文分词,需要第三方分词插件。在5.7.6版本,MySQL内置了ngram全文解析器,用来支持亚洲语种的分词。测试或使用全文索引时,要先看一下自己的MySQL版本、存储引擎和数据类型是否支持全文索引

7.补充:空间索引
使用参数SPATIAL可以设置索引为空间索引。空间索引只能建立在空间数据类型上,这样可以提高系统获取空间数据的效率。MySQL中的空间数据类型包括GEONETRY、POINT、LINESTRING和POLYGON等。目前只有MyISAM存储引擎支持空间检索,而且索引的字段不能为空值。对于初学者来说,这类索引很少会用到。

小结:不同的存储引擎支持的索引类型也不一样

lnnoDB: 支持B-tree、Full-text等索引,不支持Hash索引

MylSAM: 支持 B-tree、Full-text等索引,不支持Hash索引
Memory : 支持B-tree、Hash 等索引,不支持Full-tex索引

NDB : 支持 Hash索引,不支持 B-tree、 Full-text等索引

Archive : 不支持B-tree、Hash、Full-text等索引

1.2创建索引

MySQL支持多种方法在单个或多个列上创建索引:在创建表的定义语句CREATE TABLE中指定索引列,使用ALTER TABLE语句在存在的表上创建索引,或者使用CREATE INDEX语句在已存在的表上添加索引。

1.创建表的时候创建索引

使用CREATE TABLE创建表时,除了可以定义列的数据类型外,还可以定义主键约束、外键约束或者唯一性约束,而不论创建哪种约束。在定义约束的同时相当于在指定列上创建了一个索引。

举例:

CREATE TABLE dept(
dept_id INT PRIMARY KEY AUTO_INCREMENT,
dept_name VARCHAR(20)
);
CREATE TABLE emp(
emp_id INT PRIMARY KEY AUTO_INCREMENT,
emp_name VARCHAR(20) UNIQUE,
dept_id INT,
CONSTRAINT emp_dept_id_fk FOREIGN KEY(dept_id) REFERENCES dept(dept_id)
);

但是,如果显式创建表时创建索引的话,基本语法格式如下:

CREATE TABLE table_name [col_name data_type]
[UNIQUE | FULLTEXT | SPATIAL] [INDEX | KEY] [index_name] (col_name [length]) [ASC |DESC]

UNIQUE 、 FULLTEXT 和 SPATIAL 为可选参数,分别表示唯一索引、全文索引和空间索引;

INDEX 与 KEY 为同义词,两者的作用相同,用来指定创建索引;

index_name 指定索引的名称,为可选参数,如果不指定,那么MySQL默认col_name为索引名;

col_name 为需要创建索引的字段列,该列必须从数据表中定义的多个列中选择;

length 为可选参数,表示索引的长度,只有字符串类型的字段才能指定索引长度;

ASC 或 DESC 指定升序或者降序的索引值存储。

1.创建普通索引

在book表中的year_publication字段上建立普通索引,SQL语句如下:

CREATE TABLE book(
  book_id INT ,
  book_name VARCHAR(100),
  authors VARCHAR(100),
  info VARCHAR(100) ,
  comment VARCHAR(100),
  year_publication YEAR,
  INDEX(year_publication)
);

测试

CREATE TABLE book(
  book_id INT ,
  book_name VARCHAR(100),
  authors VARCHAR(100),
  info VARCHAR(100) ,
  comment VARCHAR(100),
  year_publication YEAR,
  # 声明索引
  INDEX idx_bname(book_name )
);

图形化界面查看,或命令行输出


2. 创建唯一索引

举例:

CREATE TABLE test1(
  id INT NOT NULL,
  name varchar(30) NOT NULL,
  UNIQUE INDEX uk_idx_id(id)
);

测试

CREATE TABLE book1(
  book_id INT ,
  book_name VARCHAR(100),
  AUTHORS VARCHAR(100),
  info VARCHAR(100) ,
  COMMENT VARCHAR(100),
  year_publication YEAR,
  # 声明索引
  UNIQUE INDEX uk_idx_cmt(COMMENT)
);

该语句执行完毕之后,使用SHOW CREATE TABLE查看表结构:

SHOW INDEX FROM book1 \G

INSERT INTO book1(book_id,book_name,COMMENT)
VALUES(1,'Mysql高级','适合有数据库开发经验的人员学习');
SELECT * FROM book1;


声明有唯一索引的字段,在添加数据时,要保证唯一性,但是可以添加null

INSERT INTO book1(book_id,book_name,COMMENT)
VALUES(2,'Mysql高级',NULL);

3.主键索引

设定为主键后数据库会自动建立索引,innodb为聚簇索引,语法:

随表一起建索引:

CREATE TABLE student (
id INT(10) UNSIGNED AUTO_INCREMENT ,
student_no VARCHAR(200),
student_name VARCHAR(200),
PRIMARY KEY(id)
);

删除主键索引:

ALTER TABLE student
drop PRIMARY KEY ;

测试

#③ 主键索引
#通过定义主键约束的方式定义主键索引
CREATE TABLE book2(
  book_id INT PRIMARY KEY,
  book_name VARCHAR(100),
  AUTHORS VARCHAR(100),
  info VARCHAR(100) ,
  COMMENT VARCHAR(100),
  year_publication YEAR
);
SHOW INDEX FROM book2;

删除主键索引:

#通过删除主键约束的方式删除主键索引
#不能有auto_increment
ALTER TABLE book2
DROP PRIMARY KEY;

修改主键索引:必须先删除掉(drop)原索引,再新建(add)索引

4.创建单列索引

举例:

CREATE TABLE test2(
  id INT NOT NULL,
  name CHAR(50) NULL,
  INDEX single_idx_name(name(20))
);

该语句执行完毕之后,使用SHOW CREATE TABLE查看表结构:

SHOW INDEX FROM test2 \G

测试

# ④ 创建单列索引
CREATE TABLE book3(
  book_id INT ,
  book_name VARCHAR(100),
  AUTHORS VARCHAR(100),
  info VARCHAR(100) ,
  COMMENT VARCHAR(100),
  year_publication YEAR,
  # 声明索引
  UNIQUE INDEX idx_bname(book_name)
);
SHOW INDEX FROM book3;

5. 创建组合索引

举例:创建表test3,在表中的id、name和age字段上建立组合索引,SQL语句如下:

CREATE TABLE test3(
  id INT(11) NOT NULL,
  name CHAR(30) NOT NULL,
  age INT(11) NOT NULL,
  info VARCHAR(255),
  INDEX multi_idx(id,name,age)
);

测试

# ⑤ 创建联合索引
CREATE TABLE book4(
  book_id INT ,
  book_name VARCHAR(100),
  AUTHORS VARCHAR(100),
  info VARCHAR(100) ,
  COMMENT VARCHAR(100),
  year_publication YEAR,
  # 声明索引
  INDEX mul_bid_bname_info(book_id,book_name,info)
);
SHOW INDEX FROM book4;




6. 创建全文索引

FULLTEXT全文索引可以用于全文搜索,并且只为CHARVARCHARTEXT列创建索引。索引总是对整个列进行,不支持局部(前缀)索引。

举例1:创建表test4,在表中的info字段上建立全文索引,SQL语句如下

CREATE TABLE test4(
  id INT NOT NULL,
  NAME CHAR(30) NOT NULL,
  age INT NOT NULL,
  info VARCHAR(255),
  FULLTEXT INDEX futxt_idx_info(info(50))
) ENGINE=MYISAM;
SHOW INDEX FROM test4;


在MySQL5.7及之后版本中可以不指定最后的ENGINE了,因为在此版本中InnoDB支持全文索引

举例2:

创建了一个给title和body字段添加全文索引的表。

CREATE TABLE articles (
  id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
  title VARCHAR (200),
  body TEXT,
  FULLTEXT index (title, body)
) ENGINE = INNODB ;

举例3:

CREATE TABLE `papers` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `title` varchar(200) DEFAULT NULL,
  `content` text,
  PRIMARY KEY (`id`),
  FULLTEXT KEY `title` (`title`,`content`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

不同于like方式的的查询:

SELECT * FROM papers WHERE content LIKE '%查询字符串%';

全文索引用match+against方式查询:

SELECT * FROM papers WHERE MATCH(title,content) AGAINST ('查询字符串');

明显提高效率。

注意点

  1. 使用全文索引前,搞清楚版本支持情况;
  2. 全文索引比 like + % 快 N 倍,但是可能存在精度问题;
  3. 如果需要全文索引的是大量数据,建议先添加数据,再创建索引。

7. 创建空间索引

空间索引创建中,要求空间类型的字段必须为 非空

举例:创建表test5,在空间类型为GEOMETRY的字段上创建空间索引,SQL语句如下:

CREATE TABLE test5(
  geo GEOMETRY NOT NULL,
  SPATIAL INDEX spa_idx_geo(geo)
) ENGINE=MyISAM;

该语句执行完毕之后,使用SHoW CREATE TABLE查看表结构:

SHOW INDEX FROM test5 \G

可以看到,test5表的geo字段上创建了名称为spa_idx_geo的空间索引。注意创建时指定空间类型字段值的非空约束,并且表的存储引擎为MylSAM。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
3月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
108 4
|
3月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
4月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
126 9
|
5月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
113 12
|
18天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
56 3
|
24天前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
2月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
11天前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。
|
12天前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。

推荐镜像

更多