多元分类预测 | Matlab灰狼优化算法优化深度极限学习机(GWO-DELM)分类预测

简介: 多元分类预测 | Matlab灰狼优化算法优化深度极限学习机(GWO-DELM)分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在机器学习领域,分类预测是一个非常重要的任务。随着深度学习的兴起,深度极限学习机(Deep Extreme Learning Machine,DELM)成为了一个备受关注的分类预测模型。然而,DELM的性能受到许多因素的影响,如网络结构的选择、权重和偏置的初始化以及训练过程中的参数调整等。为了提高DELM的性能,研究人员提出了一种新的优化方法,即灰狼优化算法(Grey Wolf Optimization,GWO)。

灰狼优化算法是受到灰狼社会行为启发而提出的一种优化算法。灰狼在自然界中具有很强的团队合作和优秀的狩猎策略,这些特点被用来设计出一种高效的优化算法。GWO通过模拟灰狼的行为,将问题的最优解搜索转化为灰狼个体之间的相互协作和竞争过程。它具有全局搜索能力和快速收敛速度的特点,因此在解决复杂问题时表现出色。

将灰狼优化算法应用于DELM的分类预测中,可以有效地提高模型的性能。首先,GWO可以用来优化DELM的网络结构,包括输入层、隐含层和输出层的节点数。通过灰狼个体之间的协作和竞争,可以找到最佳的网络结构,从而提高模型的泛化能力。其次,GWO可以用来优化DELM的权重和偏置,通过搜索最优的权重和偏置值,可以提高模型的预测准确性。最后,GWO还可以用来调整DELM的训练参数,如学习率和迭代次数等,以进一步优化模型的性能。

与其他优化算法相比,灰狼优化算法具有许多优势。首先,它不需要任何先验知识或问题的梯度信息,因此可以应用于各种类型的优化问题。其次,它具有较好的全局搜索能力,可以找到问题的全局最优解。此外,GWO还具有较快的收敛速度,可以在较短的时间内找到较好的解决方案。因此,将灰狼优化算法应用于DELM的分类预测中,可以有效地提高模型的性能。

在实际应用中,灰狼优化算法优化DELM的分类预测已经取得了一些令人鼓舞的结果。许多研究表明,与传统的优化算法相比,GWO可以显著提高DELM的分类准确率和泛化能力。此外,GWO还可以减少模型的训练时间和计算成本,提高模型的实时性和可用性。因此,灰狼优化算法在DELM的分类预测中具有广阔的应用前景。

总之,灰狼优化算法是一种有效的优化方法,可以用来优化深度极限学习机的分类预测。通过模拟灰狼的行为,GWO可以搜索最佳的网络结构、权重和偏置,以及训练参数,从而提高模型的性能。在实际应用中,GWO已经取得了一些令人鼓舞的结果,显示出在DELM的分类预测中具有广泛的应用前景。未来,我们可以进一步研究和改进灰狼优化算法,以提高其在DELM分类预测中的性能和效果。


⛄ 核心代码

%带初始权值的ELM-AEfunction[output,B,Hnew]=ELM_AEWithInitial(InputW,X,ActivF,number_neurons)% ELM-AE:the function  create an auto-encoder based ELM. % number_neurons:number of neurons in hidden layer.% X: the training set.% prefomance: RMSE of training.alpha=size(X);% 1:generate a random input weights% input_weights=rand(number_neurons,alpha(2))*2-1;input_weights = InputW;%输入初始权重% 2:calculating the hidden layertempH=input_weights*X';% activation functionswitch lower(ActivF)    case {'sig','sigmoid'}        %%%%%%%% Sigmoid         H = 1 ./ (1 + exp(-tempH));    case {'sin','sine'}        %%%%%%%% Sine        H = sin(tempH);        case {'hardlim'}        %%%%%%%% Hard Limit        H = double(hardlim(tempH));    case {'tribas'}        %%%%%%%% Triangular basis function        H = tribas(tempH);    case {'radbas'}        %%%%%%%% Radial basis function        H = radbas(tempH);        %%%%%%%% More activation functions can be added here                end% 3: calculate the output weights betaH(isnan(H)) = 0;H(isinf(H)) = 0;B=pinv(H') * X ; %Moore-Penrose pseudoinverse of matrix% calculate the output : Unlike other networks the AEs uses the same weight% beta as an input weigth for coding and output weights for decoding% we will no longer use the old input weights:input_weights. Hnew=X*B';output=Hnew*pinv(B');% 4:calculate the prefomanceprefomance=sqrt(mse(X-output));end

⛄ 运行结果

⛄ 参考文献


⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合




相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
79 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
3天前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的参数,可以有效提高控制系统的性能。本文详细介绍了GA优化PID参数的原理、适应度函数的设计以及MATLAB实现步骤,并通过仿真验证了优化效果。希望本文能为读者在实际应用中提供参考和帮助。
35 18
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
1天前
|
算法 图形学 数据安全/隐私保护
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
|
2天前
|
算法 数据安全/隐私保护
基于ACO蚁群优化的城市最佳出行路径规划matlab仿真
本程序基于蚁群优化(ACO)算法,使用MATLAB2022A进行城市最佳出行路径规划仿真。用户可调整城市数量,输出路径规划结果及ACO收敛曲线。核心代码实现最短路径更新、信息素强化与全局最优路径绘制。ACO模拟蚂蚁行为,通过信息素机制迭代优化路径,适用于不同规模的城市节点,展示从局部探索到全局最优的智能搜索过程。程序运行结果展示了点数较少、中等和较多时的路径规划效果,无水印。
|
22小时前
|
算法 数据安全/隐私保护
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
|
5天前
|
存储 算法 数据可视化
Weevil-Optimizer象鼻虫优化算法的matlab仿真实现
本项目实现了Weevil-Optimizer(象鼻虫优化算法)的MATLAB仿真,展示算法在不同适应度函数下的优化收敛曲线。程序通过智能搜索策略模拟象鼻虫觅食行为,在解空间中寻找最优解。核心代码包括排序、选择、更新操作,并绘制结果图示。测试环境为MATLAB 2022A,支持Ackley、Beale、Booth、Rastrigin和Rosenbrock函数的对比分析。 虽然Weevil-Optimizer是一个虚构的概念,但其设计思路展示了如何基于自然界生物行为模式开发优化算法。完整程序运行后无水印,提供清晰的可视化结果。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
281 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
164 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
142 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章