基本线性数据结构的Python实现

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 基本线性数据结构的Python实现

数组
数组的设计
数组设计之初是在形式上依赖内存分配而成的,所以必须在使用前预先请求空间。这使得数组有以下特性:

请求空间以后大小固定,不能再改变(数据溢出问题);
在内存中有空间连续性的表现,中间不会存在其他程序需要调用的数据,为此数组的专用内存空间;
在旧式编程语言中(如有中阶语言之称的C),程序不会对数组的操作做下界判断,也就有潜在的越界操作的风险(比如会把数据写在运行中程序需要调用的核心部分的内存上)。
因为简单数组强烈倚赖电脑硬件之内存,所以不适用于现代的程序设计。欲使用可变大小、硬件无关性的数据类型,Java等程序设计语言均提供了更高级的数据结构:ArrayList、Vector等动态数组。

Python的数组
从严格意义上来说:Python里没有严格意义上的数组。
List可以说是Python里的数组,下面这段代码是CPython的实现List的结构体:

typedef struct {
PyObject_VAR_HEAD
/ Vector of pointers to list elements. list[0] is ob_item[0], etc. /
PyObject **ob_item;

/* ob_item contains space for 'allocated' elements.  The number
 * currently in use is ob_size.
 * Invariants:
 *     0 <= ob_size <= allocated
 *     len(list) == ob_size
 *     ob_item == NULL implies ob_size == allocated == 0
 * list.sort() temporarily sets allocated to -1 to detect mutations.
 *
 * Items must normally not be NULL, except during construction when
 * the list is not yet visible outside the function that builds it.
 */
Py_ssize_t allocated;

} PyListObject;

当然,在Python里它就是数组。
后面的一些结构也将用List来实现。

堆栈
什么是堆栈
堆栈(英语:stack),也可直接称栈,在计算机科学中,是一种特殊的串列形式的数据结构,它的特殊之处在于只能允许在链接串列或阵列的一端(称为堆叠顶端指标,英语:top)进行加入资料(英语:push)和输出资料(英语:pop)的运算。另外堆叠也可以用一维阵列或连结串列的形式来完成。堆叠的另外一个相对的操作方式称为伫列。

由于堆叠数据结构只允许在一端进行操作,因而按照后进先出(LIFO, Last In First Out)的原理运作。

特点
先入后出,后入先出。
除头尾节点之外,每个元素有一个前驱,一个后继。
操作
从原理可知,对堆栈(栈)可以进行的操作有:

top():获取堆栈顶端对象
push():向栈里添加一个对象
pop():从栈里推出一个对象
实现
class my_stack(object):
def init(self, value):
self.value = value

    # 前驱
    self.before = None
    # 后继
    self.behind = None

def __str__(self):
    return str(self.value)

def top(stack):
if isinstance(stack, my_stack):
if stack.behind is not None:
return top(stack.behind)
else:
return stack

def push(stack, ele):
push_ele = my_stack(ele)
if isinstance(stack, my_stack):
stack_top = top(stack)
push_ele.before = stack_top
push_ele.before.behind = push_ele
else:
raise Exception('不要乱扔东西进来好么')

def pop(stack):
if isinstance(stack, my_stack):
stack_top = top(stack)
if stack_top.before is not None:
stack_top.before.behind = None
stack_top.behind = None
return stack_top
else:
print('已经是栈顶了')

队列
什么是队列

和堆栈类似,唯一的区别是队列只能在队头进行出队操作,所以队列是是先进先出(FIFO, First-In-First-Out)的线性表

特点
先入先出,后入后出
除尾节点外,每个节点有一个后继
(可选)除头节点外,每个节点有一个前驱
操作
push():入队
pop():出队
实现
普通队列

class MyQueue():
def init(self, value=None):
self.value = value

    # 前驱
    # self.before = None
    # 后继
    self.behind = None

def __str__(self):
    if self.value is not None:
        return str(self.value)
    else:
        return 'None'

def create_queue():
"""仅有队头"""
return MyQueue()

def last(queue):
if isinstance(queue, MyQueue):
if queue.behind is not None:
return last(queue.behind)
else:
return queue

def push(queue, ele):
if isinstance(queue, MyQueue):
last_queue = last(queue)
new_queue = MyQueue(ele)
last_queue.behind = new_queue

def pop(queue):
if queue.behind is not None:
get_queue = queue.behind
queue.behind = queue.behind.behind
return get_queue
else:
print('队列里已经没有元素了')

def print_queue(queue):
print(queue)
if queue.behind is not None:
print_queue(queue.behind)

链表
什么是链表
链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer)。由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而顺序表相应的时间复杂度分别是O(logn)和O(1)。

特点
使用链表结构可以克服数组链表需要预先知道数据大小的缺点,链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。但是链表失去了数组随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大。

操作
init():初始化
insert(): 插入
trave(): 遍历
delete(): 删除
find(): 查找
实现
此处仅实现双向列表

class LinkedList():
def init(self, value=None):
self.value = value

    # 前驱
    self.before = None
    # 后继
    self.behind = None

def __str__(self):
    if self.value is not None:
        return str(self.value)
    else:
        return 'None'

def init():
return LinkedList('HEAD')

def delete(linked_list):
if isinstance(linked_list, LinkedList):
if linked_list.behind is not None:
delete(linked_list.behind)
linked_list.behind = None
linked_list.before = None
linked_list.value = None

def insert(linked_list, index, node):
node = LinkedList(node)
if isinstance(linked_list, LinkedList):
i = 0
while linked_list.behind is not None:
if i == index:
break
i += 1
linked_list = linked_list.behind
if linked_list.behind is not None:
node.behind = linked_list.behind
linked_list.behind.before = node
node.before, linked_list.behind = linked_list, node

def remove(linked_list, index):
if isinstance(linked_list, LinkedList):
i = 0
while linked_list.behind is not None:
if i == index:
break
i += 1
linked_list = linked_list.behind
if linked_list.behind is not None:
linked_list.behind.before = linked_list.before
if linked_list.before is not None:
linked_list.before.behind = linked_list.behind
linked_list.behind = None
linked_list.before = None
linked_list.value = None

def trave(linked_list):
if isinstance(linked_list, LinkedList):
print(linked_list)
if linked_list.behind is not None:
trave(linked_list.behind)

def find(linked_list, index):
if isinstance(linked_list, LinkedList):
i = 0
while linked_list.behind is not None:
if i == index:
return linked_list
i += 1
linked_list = linked_list.behind
else:
if i < index:
raise Exception(404)
return linked_list

以上所有源代码均在GitHub共享,欢迎评论区留言,希望与大家共同进步!

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
6天前
|
存储
数据结构中的 线性结构和非线性结构
这篇文章介绍了数据结构中的线性结构和非线性结构,其中线性结构包括顺序存储结构和链式存储结构,如数组、队列、链表和栈;非线性结构包括图结构、树结构、二维数组、广义表和多维数组。
|
12天前
|
机器学习/深度学习 前端开发 数据挖掘
基于Python Django的房价数据分析平台,包括大屏和后台数据管理,有线性、向量机、梯度提升树、bp神经网络等模型
本文介绍了一个基于Python Django框架开发的房价数据分析平台,该平台集成了多种机器学习模型,包括线性回归、SVM、GBDT和BP神经网络,用于房价预测和市场分析,同时提供了前端大屏展示和后台数据管理功能。
|
27天前
|
索引 Python
python的数据结构
【7月更文挑战第23天】
26 5
|
1月前
|
算法 程序员 图形学
脑洞大开!Python并查集:用最简单的方式,解决最复杂的数据结构问题!
【7月更文挑战第17天】并查集,数据结构明星,处理不相交集合合并与查询。Python实现核心操作:查找与合并。路径压缩优化查找,按秩合并保持平衡。实战应用如图连通性判断,算法竞赛利器。掌握并查集,解锁复杂问题简单解法,照亮编程之旅!
38 10
|
30天前
|
索引 Python
|
6天前
|
存储 算法 调度
10种 Python数据结构,从入门到精通
10种 Python数据结构,从入门到精通
9 0
|
1月前
|
Python
告别低效!Python并查集:数据结构界的超级英雄,拯救你的编程人生!
【7月更文挑战第18天】并查集,数据结构超级英雄,用于不相交集合的合并与查询。Python实现包括初始化、查找根节点和合并操作。应用广泛,如社交网络分析、图论问题、集合划分等。示例代码展示了解决岛屿数量问题,统计连通的“1”单元格数。掌握并查集,提升编程效率,解决复杂问题。
33 6
|
8天前
|
前端开发 Python
数据结构Python用队列实现杨辉三角形
数据结构Python用队列实现杨辉三角形
11 0
|
1月前
|
存储 Python
震惊!Python并查集:解锁数据结构新姿势,让你从菜鸟秒变大神!
【7月更文挑战第18天】并查集,一种处理不相交集合的树形数据结构,支持Union(合并)和Find(查询)操作。Python实现中,用字典存储元素及其父节点,初始时每个元素为根。通过路径压缩提高效率。应用包括网络连通性判断、动态连通性检测和集合操作。掌握并查集,提升编程技能,解决复杂问题。开始探索,成为数据结构大师!
26 5
|
1月前
|
Python
逆天改命!掌握Python并查集,数据结构难题从此不再是你的痛!
【7月更文挑战第18天】并查集,一种神器数据结构,用于处理不相交集合合并与查询,解决网络连通性等难题。Python实现常通过记录元素父节点
26 4