Matplotlib数据可视化(三)

简介: Matplotlib数据可视化(三)

1.绘图的填充


绘图的填充可以调用fill_between()或fill()进行填充。


1.1 曲线下方区域的填充


x = np.linspace(0,1,500)
y = np.sin(3*np.pi*x)*np.exp(-4*x)
fig,ax = plt.subplots()
plt.plot(x,y)
plt.fill_between(x,-0.1, y, facecolor = 'green', alpha = 0.3)

其中代码最后一行中,参数x表示整个X轴都覆盖,0表示覆盖的下限,y表示覆盖的上限是y这条曲线,facecolor表示填充的颜色,alpha表示覆盖区域的不透明度。


结果:


eef85fdfec305255c317685da961e9c1_cb8f74500bcb4d4d8db856501057db21.png


1.2 填充部分区域


x = np.linspace(0,1,500)
y = np.sin(3*np.pi*x)*np.exp(-4*x)
fig,ax = plt.subplots()
plt.plot(x,y)
plt.fill_between(x[15:300], 0, 0.4, facecolor = 'blue', alpha = 0.3)


结果:


3a56d0536bf4706dec7a20a1485a9bbf_d866c745754e4bcabd8fab6af5ede2a5.png


1.3 两条曲线之间的区域填充


x = np.linspace(0,1,500)
y1 = np.sin(3*np.pi*x)*np.exp(-4*x)
y2  =  y1 + 0.2
plt.plot(x, y1,'b')
plt.plot(x, y2, 'r')
plt.fill_between(x, y1, y2, facecolor = 'green', alpha = 0.3)
plt.show()


结果:


0968eebacad057e2c029161acb6db39a_80f0e4a4a48a425e8ca4fc3d8dfbf51a.png


1.4 直接使用fill进行填充


x = np.linspace(0,1,500)
y = np.sin(3*np.pi*x)*np.exp(-4*x)
fig,ax = plt.subplots()
ax.fill(x,y,'yellow')
plt.show()

结果:

1ba5167432e1de58ea9a5cbe3c3da059_faef6fd2ccbe413b800a077b0e315092.png


目录
相关文章
|
3月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
58 1
|
1月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
2月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
126 3
|
2月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
30 0
|
3月前
|
数据可视化 数据挖掘 开发者
数据可视化新纪元!Python + Matplotlib + Seaborn,让你的数据故事生动起来!
在这个数据可视化的新纪元,让我们充分发挥 Python 的优势,用精彩的图表讲述数据背后的故事,为决策提供有力的支持,为交流带来清晰的视角。
35 4
|
3月前
|
数据可视化 Python
Python中的数据可视化:使用Matplotlib绘制图表
【9月更文挑战第11天】在这篇文章中,我们将探索如何使用Python的Matplotlib库来创建各种数据可视化。我们将从基本的折线图开始,然后逐步介绍如何添加更多的功能和样式,以使您的图表更具吸引力和信息量。无论您是数据科学家、分析师还是任何需要将数据转化为视觉形式的专业人士,这篇文章都将为您提供一个坚实的起点。让我们一起潜入数据的海洋,用视觉的力量揭示其背后的故事。
62 16
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
51 2
|
3月前
|
数据可视化 数据挖掘 API
使用Python进行数据可视化:探索Matplotlib和Seaborn库
【9月更文挑战第19天】在数据科学领域,将复杂的数据集转换成直观、易懂的图形是一项基本而关键的技能。本文旨在通过Python编程语言介绍两个强大的数据可视化库——Matplotlib和Seaborn,以及它们如何帮助数据分析师和研究人员揭示数据背后的故事。我们将从基础概念讲起,逐步深入到高级技巧,确保无论读者的背景如何,都能获得必要的知识和启发,以在自己的项目中实现有效的数据可视化。
|
3月前
|
数据可视化 数据挖掘 Python
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
48 4
|
3月前
|
数据可视化 数据挖掘 数据处理
Python中数据可视化的魔法——使用Matplotlib和Pandas
【9月更文挑战第5天】在Python的世界里,数据可视化是连接复杂数据与人类直觉的桥梁。本篇文章将带领读者探索如何使用Matplotlib和Pandas这两个强大的库来揭示数据背后的故事。我们将从基础概念开始,逐步深入到高级技巧,让每一位读者都能轻松创建引人入胜的数据可视化图表,使数据分析变得既直观又有趣。
98 14