极客时间算法训练营 Week01

简介: 极客时间算法训练营 Week01

本周学习内容包括:数组、链表、栈、队列。

  • 数组
  • 支持随机访问
  • 按下标访问 O(1)复杂度
  • 在内存中是一段连续的存储空间
  • 操作复杂度
  • LookUp O(1)
  • Insert O(n)
  • Delete O(n)
  • Append O(1)
  • Prepend O(n)
  • 变长数组
  • 链表
  • 允许存储空间不连续
  • 单链表
  • 插入
  • 删除
  • 操作复杂度
  • LookUp O(n)
  • Insert O(1)
  • Delete O(1)
  • Append O(n)
  • Prepend O(1)

  • 先进后出(Last in, first out)
  • 队列
  • 先进先出(First in, first out)


66. 加一

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
class Solution {
    public int[] plusOne(int[] digits) {
        int length = digits.length;
        List<Integer> list = new ArrayList<>(length * 2);
        int increment = 1;
        for (int i = length - 1; i >= 0; i--) {
            int result = digits[i] + increment;
            list.add(result % 10);
            increment = result / 10;
        }
        if (increment > 0) {
            list.add(increment);
        }
        int size = list.size();
        int[] results = new int[size];
        for (int i = 0; i < list.size(); i++) {
            results[size - i - 1] = list.get(i);
        }
        return results;
    }
}


21. 合并两个有序链表

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        ListNode head = new ListNode();
        ListNode cur = head;
        while(l1 != null && l2 != null) {
            int i1 = l1.val;
            int i2 = l2.val;
            if(i1 <= i2) {
                cur.next = l1;
                l1 = l1.next;
            } else {
                cur.next = l2;
                l2 = l2.next;
            }
            cur = cur.next;
        }
        if (l1 != null) {
            cur.next = l1;
        }
        if (l2 != null) {
            cur.next = l2;
        }
        return head.next;
    }
}

目录
相关文章
|
算法
极客时间算法训练营 Week03
极客时间算法训练营 Week03
89 0
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
85 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
5天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
7天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
3天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
10天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。

热门文章

最新文章