m基于FFT傅里叶变换的256QAM基带信号频偏估计和补偿FPGA实现,含testbench和matlab星座图显示

简介: m基于FFT傅里叶变换的256QAM基带信号频偏估计和补偿FPGA实现,含testbench和matlab星座图显示

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,并使用matlab2022a对结果进行星座图的显示:

b4e3871c3c1fcb731f9603c7196bd0cf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
991844d902a7b8ff42ab465e94d5c173_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

频偏基带256qam信号和频偏补偿后的256qam基带信号使用matlab显示星座图,结果如下:
29289960b8238ba4fb67f99194f53a50_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
FFT傅里叶变换是一种高效的频谱分析方法,可以将时域信号转换为频域信号,用于频偏估计。FFT傅里叶变换是一种将时域信号转换为频域信号的方法,可以将信号的频谱信息展现出来。对于基带信号,通过FFT可以分析信号的频谱分布,从中获得频偏的估计。FFT傅里叶变换的数学原理如下:

   假设输入的时域信号为 x(n),通过FFT傅里叶变换将其转换为频域信号 X(k):

8efff55c9668eb43c366987e0da405ce_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    频偏估计和补偿的目标是通过接收到的信号来估计频偏,并在接收端对接收信号进行频偏补偿,使其与发送信号的频率完全一致。基于FFT傅里叶变换的频偏估计和补偿算法的数学原理如下(其实现原理和QPSK类似):  

38c17bb856653a887a233422c76cdb18_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    综上所述,基于FFT傅里叶变换的256qam基带信号频偏估计和补偿算法的实现过程主要包括64QAM调制、信号传输、接收、FFT傅里叶变换、频偏估计和频偏补偿等步骤。   

3.Verilog核心程序
````timescale 1ns / 1ns
module TEST;

reg clk;
reg i_clkSYM;
reg rst;
reg start;

wire  [7:0] parallel_data;
wire [15:0]sin;
wire [15:0]cos;
wire signed[19:0]  I_com;
wire signed[19:0]  Q_com;
wire signed[15:0]o_Ifir_T;
wire signed[15:0]o_Qfir_T;


// DUT
tops_256QAM_mod  top(
   .clk(clk),
   .rst(rst),
   .start(start),
   .parallel_data(parallel_data),
   .sin(sin),
   .cos(cos),
   .I_com(I_com),
   .Q_com(Q_com),
   .I_comcos(o_Ifir_T),
   .Q_comsin(o_Qfir_T)
   );

wire [15:0]o_freq;
wire signed[15:0]o_cos;
wire signed[15:0]o_sin;
wire signed[15:0]o_Ifir;
wire signed[15:0]o_Qfir;
wire o_ends;
wire o_start;
wire o_enable;
wire signed[31:0]absy;
//256相位估计和补偿
tops_256QAM_Fre_est tops_256QAMU(
.i_clk (clk),
.i_rst (~rst),
.i_clkSYM(i_clkSYM),
.i_I(o_Ifir_T),
.i_Q(o_Qfir_T),
.o_ends(o_ends),
.o_start(o_start),
.o_enable(o_enable),
.absy (absy),
.o_freq(o_freq),
.o_cos (o_cos),
.o_sin (o_sin),
.o_Ifir (o_Ifir),
.o_Qfir (o_Qfir)
);

initial begin
    clk = 0;
    rst = 0;
    start = 1;
    #10;
    rst = 1;
end

always #5
clk <= ~clk;

reg writeen;
initial
begin
writeen = 1'b0;

i_clkSYM=1'b1;


#100
writeen = 1'b1;

end

always #80 i_clkSYM=~i_clkSYM;
initial
begin

#14400000

$stop();

end
//显示发射端带相位旋转的星座图
integer fout1;
integer fout2;
initial begin
fout1 = $fopen("It.txt","w");
fout2 = $fopen("Qt.txt","w");
end
always @ (posedge clk)
begin
if(writeen==1)
begin
$fwrite(fout1,"%d\n",o_Ifir_T);
$fwrite(fout2,"%d\n",o_Qfir_T);
end
end
//显示接收端相位估计和补偿之后的星座图
integer fout3;
integer fout4;
initial begin
fout3 = $fopen("Ir.txt","w");
fout4 = $fopen("Qr.txt","w");
end
always @ (posedge clk)
begin
if(writeen==1)
begin
$fwrite(fout3,"%d\n",o_Ifir);
$fwrite(fout4,"%d\n",o_Qfir);
end
end

endmodule
```

相关文章
|
5月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
1月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
27天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
4月前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
4月前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
81 8
|
4月前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
4月前
|
存储 算法 计算机视觉
m基于FPGA的FIR低通滤波器实现和FPGA频谱分析,包含testbench和滤波器系数MATLAB计算程序
在Vivado 2019.2平台上开发的系统,展示了数字低通滤波器和频谱分析的FPGA实现。仿真结果显示滤波效果良好,与MATLAB仿真结果一致。设计基于FPGA的FIR滤波器,利用并行处理和流水线技术提高效率。频谱分析通过离散傅里叶变换实现。提供了Verilog核心程序以示例模块工作原理。
42 4
|
4月前
|
算法 计算机视觉 异构计算
基于FPGA的图像直方图均衡化处理verilog实现,包含tb测试文件和MATLAB辅助验证
摘要: 在FPGA上实现了图像直方图均衡化算法,通过MATLAB2022a与Vivado2019.2进行仿真和验证。核心程序涉及灰度直方图计算、累积分布及映射变换。算法旨在提升图像全局对比度,尤其适合低对比度图像。FPGA利用可编程增益器和查表技术加速硬件处理,实现像素灰度的均匀重分布,提升视觉效果。![image preview](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_a075525027db4afbb9c0529921fd0152.png)
|
4月前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
54 0
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。

热门文章

最新文章