Python 基础(十六):迭代器与生成器

简介: Python迭代器与生成器

1 迭代器

迭代

我们知道 Python 中有一些对象可以通过 for 来循环遍历,比如:列表、元组、字符等,以字符串为例,如下所示:

for i in 'Hello':
    print(i)

执行结果:

H
e
l
l
o

这个遍历过程就是迭代。

可迭代对象

可迭代对象需具有 __iter__() 方法,它们均可使用 for 循环遍历,我们可以使用 isinstance() 方法来判断一个对象是否为可迭代对象,看下示例:

from collections import Iterable

print(isinstance('abc', Iterable))
print(isinstance({
   1, 2, 3}, Iterable))
print(isinstance(1024, Iterable))

执行结果:

True
True
False

迭代器

迭代器需要具有 __iter__()__next__() 两个方法,这两个方法共同组成了迭代器协议,通俗来讲迭代器就是一个可以记住遍历位置的对象,迭代器一定是可迭代的,反之不成立。

  • __iter__():返回迭代器对象本身
  • __next__():返回下一项数据

迭代器对象本质是一个数据流,它通过不断调用 __next__() 方法或被内置的 next() 方法调用返回下一项数据,当没有下一项数据时抛出 StopIteration 异常迭代结束。上面我们说的 for 循环语句的实现便是利用了迭代器。

我们试着自己来实现一个迭代器,如下所示:

class MyIterator:
    def __init__(self):
        self.s = '程序之间'
        self.i = 0

    def __iter__(self):
        return self

    def __next__(self):
        if self.i < 4:
            n = self.s[self.i]
            self.i += 1
            return n
        else:
            raise StopIteration

mi = iter(MyIterator())
for i in mi:
    print(i)

输出结果:

程
序
之
间

2 生成器

生成器是用来创建迭代器的工具,其写法与标准函数类似,不同之处在于返回时使用 yield 语句,关于 yield ,我们在使用 Scrapy 爬取去哪儿网景区信息中已经作了一些介绍,我们再来熟悉一下:

yield 是一个关键字,作用和 return 差不多,差别在于 yield 返回的是一个生成器(在 Python 中,一边循环一边计算的机制,称为生成器),它的作用是:有利于减小服务器资源,在列表中所有数据存入内存,而生成器相当于一种方法而不是具体的信息,用多少取多少,占用内存小。

生成器的创建方式有很多种,比如:使用 yield 语句、生成器表达式(可以简单的理解为是将列表的 [] 换成了 (),特点是更加简洁,但不够灵活)。看下示例:

示例 1

def reverse(data):
    for i in range(len(data)-1, -1, -1):
        yield data[i]
for char in reverse('Hello'):
    print(char)

执行结果:

o
l
l
e
H

示例 2

# 列表
lis = [x*x for x in range(5)]
print(lis)

# 生成器
gen = (x*x for x in range(5))
for g in gen:
    print(g)

执行结果:

[0, 1, 4, 9, 16]
0
1
4
9
16
相关文章
|
1月前
|
大数据 数据处理 数据安全/隐私保护
Python3 迭代器与生成器详解:从入门到实践
简介:本文深入解析Python中处理数据序列的利器——迭代器与生成器。通过通俗语言与实战案例,讲解其核心原理、自定义实现及大数据处理中的高效应用。
75 0
|
3月前
|
人工智能 数据安全/隐私保护 Python
小红书图文生成器,小红书AI图文生成工具,python版本软件
Pillow库自动生成符合平台尺寸要求的配图7;3)利用Playwright实现自动化发布流程6。
|
3月前
|
数据采集 NoSQL 调度
当生成器遇上异步IO:Python并发编程的十大实战兵法
本文通过十大实战场景,详解Python中生成器与异步IO的高效结合。从协程演进、背压控制到分布式锁、性能剖析,全面展示如何利用asyncio与生成器构建高并发应用,助你掌握非阻塞编程核心技巧,提升I/O密集型程序性能。
100 0
|
12天前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
136 2
|
6月前
|
开发者 Python
Python代码设计:使用生成器替代回调函数
本文探讨了在处理大文件时计算MD5值的实现方法,并展示了如何通过回调函数、生成器和类等方式输出进度。首先介绍了通过回调函数更新进度的方式,然后优化为使用生成器简化调用者代码,最后对比了两种方式的优缺点。虽然生成器使代码更简洁,但在异常处理上不如回调函数灵活。作者通过实例分析,帮助开发者根据需求选择合适的方式。
105 16
|
2月前
|
传感器 数据采集 监控
Python生成器与迭代器:从内存优化到协程调度的深度实践
简介:本文深入解析Python迭代器与生成器的原理及应用,涵盖内存优化技巧、底层协议实现、生成器通信机制及异步编程场景。通过实例讲解如何高效处理大文件、构建数据流水线,并对比不同迭代方式的性能特点,助你编写低内存、高效率的Python代码。
121 0
|
3月前
|
存储 API 数据库
自动发短信的软件,批量自动群发短信,手机号电话号生成器【python框架】
这个短信群发系统包含以下核心功能: 随机手机号生成器(支持中国号码) 批量短信发送功能(使用Twilio API)
|
4月前
|
数据采集 搜索推荐 调度
当生成器遇上异步IO:Python并发编程的十大实战兵法
生成器与异步IO是Python并发编程中的两大利器,二者结合可解决诸多复杂问题。本文通过十个真实场景展示其强大功能:从优雅追踪日志文件、API调用流量整形,到实时数据流反压控制、大文件分片处理等,每个场景都体现了生成器按需生成数据与异步IO高效利用I/O的优势。两者配合不仅内存可控、响应及时,还能实现资源隔离与任务独立调度,为高并发系统提供优雅解决方案。这种组合如同乐高积木,虽单个模块简单,但组合后却能构建出复杂高效的系统。
90 0
|
12月前
|
存储 索引 Python
Python生成器、装饰器、异常(2)
【10月更文挑战第16天】
147 1
Python生成器、装饰器、异常(2)
|
11月前
|
大数据 数据处理 开发者
Python中的迭代器和生成器:不仅仅是语法糖####
本文探讨了Python中迭代器和生成器的深层价值,它们不仅简化代码、提升性能,还促进了函数式编程风格。通过具体示例,揭示了这些工具在处理大数据、惰性求值及资源管理等方面的优势。 ####

热门文章

最新文章

推荐镜像

更多