限流算法(计数器、滑动时间窗口、漏斗、令牌)原理以及代码实现

简介: > 本文会对这4个限流算法进行详细说明,并输出实现限流算法的代码示例。> 代码是按照自己的理解写的,很简单的实现了功能,还请大佬们多多交流找bug。

本文会对这4个限流算法进行详细说明,并输出实现限流算法的代码示例。
代码是按照自己的理解写的,很简单的实现了功能,还请大佬们多多交流找bug。
下面还有投票,帮忙投个票👍

前言

什么是限流?限流 限流 就是限制流量。在高并发、高流量的场景中我们需要把限流做好,防止突发的流量、恶意的攻击等大量请求的冲击带来不必要的影响,保证业务系统的正常运行。

如何限流?首先我们需要知道限流的基本思路,其次需要知道限流的几种实现方式(这里我们叫限流算法)。

限流的基本思路就是在一个单位时间内流量超过某个阈值后被拒绝或限制。

目前常见的限流算法有计数器(固定时间窗口)算法、滑动时间窗口算法、漏斗算法、令牌算法。

1、计数器(固定时间窗口)算法

计数器(固定时间窗口)算法是最简单的限流算法,实现方式也比较简单。

原理

其原理是:通过维护一个单位时间内的计数值,每当一个请求通过时,就将计数值加1,当计数值超过预先设定的阈值时,就拒绝单位时间内的其他请求。如果单位时间已经结束,则将计数器清零,开启下一轮的计数。

在这里插入图片描述

代码实现

import java.util.Random;

public class Counter {
   
   

    //时间窗口
    private final int interval = 1000;

    //时间窗口内的阈值
    private final int limit = 5;

    private long lastTime = System.currentTimeMillis();

    private int counter = 0;

    public boolean tryAcquire() {
   
   

        if (System.currentTimeMillis() < lastTime + interval) {
   
   
            // 在时间窗口内
            counter++;
        } else {
   
   
            //超过时间窗口充值重置counter
            lastTime = System.currentTimeMillis();
            counter = 1;
        }
        return counter <= limit;
    }


    public static void main(String[] args) throws InterruptedException {
   
   
        Counter counter = new Counter();
        while (true) {
   
   
            if (counter.tryAcquire()) {
   
   
                System.out.println("进行请求");
            } else {
   
   
                System.out.println("限流了。。。。");
            }
            Thread.sleep(100 * new Random().nextInt(5));
        }

    }
}
AI 代码解读

存在的问题

但是这种实现会有一个问题,举个例子:

假设我们设定1s内允许通过的请求阈值是100,如果在时间窗口的最后几毫秒发送了99个请求,紧接着又在下一个时间窗口开始时发送了99个请求,那么这个用户其实在一秒显然超过了阈值但并不会被限流。其实这就是临界值问题,那么临界值问题要怎么解决呢?

在这里插入图片描述

2、滑动时间窗口算法

原理

滑动时间窗口算法就是为了解决上述固定时间窗口存在的临界值问题而诞生。要解决这种临界值问题,显然只用一个窗口是解决不了问题的。假设我们仍然设定1秒内允许通过的请求是200个,但是在这里我们需要把1秒的时间分成多格,假设分成5格(格数越多,流量过渡越平滑),每格窗口的时间大小是200毫秒,每过200毫秒,就将窗口向前移动一格。为了便于理解,可以看下图

在这里插入图片描述

图中将窗口划为5份,每个小窗口中的数字表示在这个窗口中请求数,所以通过观察上图,可知在当前窗口(200毫秒)只要超过110就会被限流。

代码实现

这里我用了 LinkedList 作为分割窗口,可以快速的实现功能。

import java.util.LinkedList;
import java.util.Random;

public class MovingWindow {
   
   

    //时间窗口/ms
    private final int interval = 1000;

    //时间窗口内的阈值
    private final int limit = 5;

    //分割窗口个数
    private int slotCount = 5;

    private LinkedList<Node> slot = new LinkedList<Node>();

    public MovingWindow() {
   
   
        new Thread(() -> {
   
   
            while (true) {
   
   
                // 每过200毫秒,就将窗口向前移动一格
                if (slot.size() == slotCount) {
   
   
                    slot.poll();
                }
                slot.offer(new Node(System.currentTimeMillis()));
                try {
   
   
                    Thread.sleep(interval / slotCount);
                } catch (InterruptedException e) {
   
   
                    e.printStackTrace();
                }
            }
        }).start();

    }

    public boolean tryAcquire() {
   
   
        Node currWindow = getCurrWindow();
        currWindow.setCount(currWindow.getCount() + 1);
        return getCounter() <= limit;
    }

    private int getCounter() {
   
   
        return slot.stream().mapToInt(Node::getCount).sum();
    }

    private Node getCurrWindow() {
   
   
        if (slot.isEmpty()) {
   
   
            while (true) {
   
   
                if (slot.isEmpty()) {
   
   
                    try {
   
   
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
   
   
                        e.printStackTrace();
                    }
                } else break;
            }
        }
        return slot.getLast();
    }


    private class Node {
   
   

        private int count;

        private long time;

        public Node(long time) {
   
   
            this.time = time;
        }

        public int getCount() {
   
   
            return count;
        }

        public void setCount(int count) {
   
   
            this.count = count;
        }

        public long getTime() {
   
   
            return time;
        }

        public void setTime(long time) {
   
   
            this.time = time;
        }
    }


    public static void main(String[] args) throws InterruptedException {
   
   
        MovingWindow counter = new MovingWindow();
        while (true) {
   
   
            counter.slot.stream().forEach(node -> System.out.print(node.getTime() + ":" + node.getCount() + "|"));
            if (counter.tryAcquire()) {
   
   
                System.out.println("进行请求");
            } else {
   
   
                System.out.println("限流了。。。。");
            }
            Thread.sleep(100 * new Random().nextInt(5));
        }


    }

}
AI 代码解读

存在的问题

那么滑动窗口限流法是完美的吗?细心观察我们应该能马上发现问题,如下图:

在这里插入图片描述

0ms-1000ms、200ms-1200ms的请求在我们设置的阈值内,但是100ms-1100ms的请求一共是220,超过了我们所设置的阈值。

滑动时间窗口限流法其实就是计数器算法的一个变种,依然存在临界值的问题。并且流量的过渡是否平滑依赖于我们设置的窗口格数,格数越多,统计越精确,但是具体要分多少格呢?

3、漏桶算法

上面所介绍的两种算法存在流量不能平滑的过渡,下面介绍下漏桶算法。

原理

漏桶算法以一个常量限制了出口流量速率,因此漏桶算法可以平滑突发的流量。其中漏桶作为流量容器我们可以看做一个FIFO的队列,当入口流量速率大于出口流量速率时,因为流量容器是有限的,超出的流量会被丢弃。

下图比较形象的说明了漏桶算法的原理,其中水滴是入口流量,漏桶是流量容器,匀速流出的水是出口流量。

image.png

代码实现

这里我用了 ArrayBlockingQueue 作为漏桶,可以快速的实现功能。

import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;

public class Funnel {
   
   

    //出口流量速率 1s 10个
    private int rate = 10;

    //漏桶
    private ArrayBlockingQueue bucket;


    public Funnel(int rate, int capacity) {
   
   
        this.rate = rate;
        this.bucket = new ArrayBlockingQueue(capacity);
        int speed = 1000 / this.rate;
        //固定速率滴水
        new Thread(() -> {
   
   
            while (true) {
   
   
                bucket.poll();
                try {
   
   
                    Thread.sleep(speed);
                } catch (InterruptedException e) {
   
   
                    e.printStackTrace();
                }
            }
        }).start();
    }

    public boolean tryAcquire() {
   
   
        // 漏桶里面放水
        return bucket.offer(this);
    }


    public static void main(String[] args) throws InterruptedException {
   
   
        Funnel funnel = new Funnel(10, 100);
        while (true) {
   
   
            if (funnel.tryAcquire()) {
   
   
                System.out.println("进行请求");
            } else {
   
   
                System.out.println("限流了。。。。");
            }
            Thread.sleep(20 * new Random().nextInt(5));
        }
    }

}
AI 代码解读

存在的问题

因为漏桶算法的流出速率是固定的,所以漏桶算法不支持出现突发流出流量。但是在实际情况下,流量往往是突发的。

4、令牌桶算法

令牌桶算法是漏桶算法的改进版,可以支持突发流量。不过与漏桶算法不同的是,令牌桶算法的漏桶中存放的是令牌而不是流量。

原理

令牌桶算法是如何支持突发流量的呢?最开始,令牌桶是空的,我们以恒定速率往令牌桶里加入令牌,令牌桶被装满时,多余的令牌会被丢弃。当请求到来时,会先尝试从令牌桶获取令牌(相当于从令牌桶移除一个令牌),获取成功则请求被放行,获取失败则阻塞或拒绝请求。那么当突发流量来临时,只要令牌桶有足够的令牌,就不会被限流。

image.png

代码实现

import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;

public class Token {
   
   

    //添加令牌速率 1s 10个
    private int rate = 10;

    //漏桶
    private ArrayBlockingQueue bucket;


    public Token(int rate, int capacity) {
   
   
        this.rate = rate;
        this.bucket = new ArrayBlockingQueue(capacity);
        //恒定速率往漏桶里面添加令牌
        int speed = 1000 / this.rate;
        new Thread(() -> {
   
   
            while (true) {
   
   
                bucket.offer(this);
                try {
   
   
                    Thread.sleep(speed);
                } catch (InterruptedException e) {
   
   
                    e.printStackTrace();
                }
            }
        }).start();
    }

    public boolean tryAcquire() {
   
   
        // 漏桶里面取令牌
        return null != bucket.poll();
    }


    public static void main(String[] args) throws InterruptedException {
   
   
        Token funnel = new Token(10, 100);
        //8s后突发流量
        Thread.sleep(8000);
        while (true) {
   
   
            if (funnel.tryAcquire()) {
   
   
                System.out.println("进行请求");
            } else {
   
   
                System.out.println("限流了。。。。");
            }
            Thread.sleep(20 * new Random().nextInt(5));
        }
    }

}
AI 代码解读

最后

或许大家在工作中会用现成的一些限流组件比如:Spring Cloud 的 Hystrix 、Spring Cloud Alibaba 的 Sentinel 或者是 Google 的 Guava 限流器。其实现原理离不开上述所说的4种限流算法,我们开发人员还是要知其然,知其所以然。

相关文章
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
214 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
106 1
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
107 2
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。

热门文章

最新文章