【spring源码系列-04】注解方式启动spring时refresh的前置工作

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 【spring源码系列-04】注解方式启动spring时refresh的前置工作

一,注解的方式启动spring时refresh的前置工作

上一篇中提到了xml的方式启动spring,接下来通过注解方式来剖析spring内部的启动流程。



通过注解获取上下文的方式如下,随后定义一个AnnotationConfig的配置类,通过@Bean的方式构建实例。这里依旧推荐使用debug的方式,从上往下看。

ApplicationContext ac = new AnnotationConfigApplicationContext(AnnotationConfig.class);

随后会进入AnnotationConfigApplicationContext 的构造方法,并且可以发现支持传多个参数。由于这里也是剖析refresh的前置工作,因此这里重点主要是查看this() 和 register 这两个方法。

public AnnotationConfigApplicationContext(Class<?>... annotatedClasses) {
  this();      //调用构造函数
  register(annotatedClasses);   //注册我们的配置类
  refresh();   //IOC容器刷新接口
}

1,this()

首先会调用 AnnotationConfigApplicationContext 自身的构造方法,也可以通过上图的执行流程进行对照。

public AnnotationConfigApplicationContext() {
    //创建一个读取注解的Bean定义读取器
    this.reader = new AnnotatedBeanDefinitionReader(this);
    //创建类路径下的BeanDefinition扫描器
    this.scanner = new ClassPathBeanDefinitionScanner(this);
}

在分析这个AnnotationConfigApplicationContext类之前,先来看一下这个类的类图,发现也是众多接口的具体的子类,同时也说明该类的功能非常的齐全和强大


9942854f185d42f2ab04b200fafea4b7.png


1,在实例化AnnotationConfigApplicationContext类之前,需要先实例化其父类。由于这个ResourceLoader 是一个接口,没有对应的构造方法,根据断点也能发现,会要优先加载DefaultResourceLoader的构造器。在这个构造方法中,可以发现里面会调用一个getDefaultClassLoader方法

public class DefaultResourceLoader implements ResourceLoader {
    ...
  public DefaultResourceLoader() {
    this.classLoader = ClassUtils.getDefaultClassLoader();
  }
}

getDefaultClassLoader 顾名思义,就是获取默认的类加载器。在jvm中,类加载器主要有引导类加载器、扩展类加载起、系统类加载器和自定义类加载器。获取已有的类加载器,如果获取的类加载器为空,则设置默认的类加载器为系统类加载器

public static ClassLoader getDefaultClassLoader() {
    ClassLoader cl = null;
  //获取当前线程的类加载器
    cl = Thread.currentThread().getContextClassLoader();
    if (cl == null) {
        //如果获取到的值为空,则将类加载器设置为系统类加载器
        cl = ClassLoader.getSystemClassLoader();
    }
}

2,获取到类加载器之后,根据debug的断点继续往下走,可以发现下一步是去获取一个 LogFactory ,

public static Log getLog(Class<?> clazz) {
   return getLog(clazz.getName());
}

随后进入具体获取日志的方法,创建具体的日志,其内部流程也非常复杂

public static Log getLog(String name) {
  switch (logApi) {
    case LOG4J:
      return Log4jDelegate.createLog(name);
    case SLF4J_LAL:
      return Slf4jDelegate.createLocationAwareLog(name);
    case SLF4J:
      return Slf4jDelegate.createLog(name);
    default:
      return JavaUtilDelegate.createLog(name);
  }
}

系统默认使用的是 LOG4J ,接下来进入这个 Log4jDelegate.createLog 这个方法,里面会创建并返回一个Log4jLog 对象

return new Log4jLog(name);

而在这个Log4jLog 类中,其构造方法如下,即会调用这个 getLogger 方法


//获取日志上下文
public Log4jLog(String name) {
  this.logger = loggerContext.getLogger(name);
}

随后进入真正的获取日志的方法

public ExtendedLogger getLogger(final String name, final MessageFactory messageFactory) {
    //获取日志工厂,无则创建,有则获取
  final ExtendedLogger extendedLogger = loggerRegistry.getLogger(name, messageFactory);
  if (extendedLogger != null) {
        //检查创建的日志工厂个给定的消息工厂是否一致
    AbstractLogger.checkMessageFactory(extendedLogger, messageFactory);
    return extendedLogger;
  }
    //如果获取的工厂为空,
  final SimpleLogger simpleLogger = new SimpleLogger(name, defaultLevel, showLogName, showShortName, showDateTime,
    showContextMap, dateTimeFormat, messageFactory, props, stream);
  loggerRegistry.putIfAbsent(name, messageFactory, simpleLogger);
  return loggerRegistry.getLogger(name, messageFactory);
}

如果获取到的日志工厂为空,则会调用这这个 SimpleLogger 方法


3c4141810c844a97a7cf048fee34cd32.png


随后调用这个super父类方法,会判断当前的消息工厂是否为空,为空则创建一个默认的消息工厂

//初始化父类
public AbstractLogger(final String name, final MessageFactory messageFactory) {
  this.name = name;
    //不为空则获取,为空则创建一个默认的
  this.messageFactory = messageFactory == null ? createDefaultMessageFactory() : narrow(messageFactory);
  this.flowMessageFactory = createDefaultFlowMessageFactory();
}

其创建方式如下,通过构造器的反射的方式创建一个消息的日志

private static MessageFactory2 createDefaultMessageFactory() {
    try {
        final MessageFactory result = DEFAULT_MESSAGE_FACTORY_CLASS.newInstance();
        return narrow(result);
    } catch (final InstantiationException | IllegalAccessException e) {
        throw new IllegalStateException(e);
    }
}

3,在调完super之后,随后就是一个获取系统属性的一个方法

final String lvl = props.getStringProperty(SimpleLoggerContext.SYSTEM_PREFIX + name + ".level");

接下来继续往下走,可以发现是一个PropertiesUtil工具类里面的这个getStringProperty方法,而里面的重点就是这个environment 对象的由来

public String getStringProperty(final String name) {
    return environment.get(name);
}

可以发现这个event环境对象,是通过这个实例化Environment对象而来

public PropertiesUtil(final Properties props) {
    this.environment = new Environment(new PropertiesPropertySource(props));
}
public PropertiesUtil(final String name) {
  this.environment = new Environment(new PropertyFilePropertySource(name));
}

再进入到这个Environment 的构造方法中,可以发现在这一步,就开始获取系统的变量和实现

private Environment(final PropertySource propertySource) {
  sources.add(propertySource);
  for (final ClassLoader classLoader: LoaderUtil.getClassLoaders()) {
    try {
      for (final PropertySource source: ServiceLoader.load(PropertySource.class, classLoader)) {
        sources.add(source);
      }
    } catch (final Throwable ex) {
    }
  }
  reload();
}

并且在这个类中,有着四个属性,literal存储集合存储系统的属性,tokenized存储系统的环境变量,normalized存储日志相关的参数。继续往下走可以看到这些参数对应的值

0536e3f734d44de7bbd34fd5196d3ae1.png


Set<PropertySource> sources = new TreeSet<>(new PropertySource.Comparator());
Map<CharSequence, String> literal = new ConcurrentHashMap<>();
Map<CharSequence, String> normalized = new ConcurrentHashMap<>();
Map<List<CharSequence>, String> tokenized = new ConcurrentHashMap<>();

环境变量


1881b727781e48148441296aac11f47b.png


系统属性


715a15649a534bd2b2a3fb1ee90c8e03.png


日志属性

984f73dfce49459382b4e34bf207a1c9.png



在获取到这些属性之后,会对刚刚设置的值进行判断,看设置的值是包含在系统参数中,如果包含,就将这些参数加入到缓存中。

public static List < CharSequence > tokenize(final CharSequence value) {
  if (CACHE.containsKey(value)) {
    return CACHE.get(value);
  }
  final List < CharSequence > tokens = new ArrayList < > ();
  final Matcher matcher = PROPERTY_TOKENIZER.matcher(value);
  while (matcher.find()) {
    tokens.add(matcher.group(1).toLowerCase());
  }
    //存入缓存
  CACHE.put(value, tokens);
  return tokens;
}

4,在获取完系统环境和属性之后,通过打断点继续走,再次回到了这个AbstractApplicationContext 类中,获取当前对象的hashcode对应的value

private String id = ObjectUtils.identityToString(this);

identityToString方法中可以发现,就是一字符串的形式返回对象的标识,就是通过对象的全路径名称的类名加上一个@一个该类对应的hashcode

public static String identityToString(@Nullable Object obj) {
  if (obj == null) {
    return EMPTY_STRING;
  }
    //对象名称 + @ + 获取到的hashcode对应的十六进制的值
  return obj.getClass().getName() + "@" + getIdentityHexString(obj);
}

将对象的hashcode的值先进行一个十六进制的转换,后面将值给返回

//将对象的hashcode转换成十六进制,并将值返回
public static String getIdentityHexString(Object obj) {
  return Integer.toHexString(System.identityHashCode(obj));
}

如下图,这个id的值就是当前对象的唯一标识,就是当前对象对应的唯一值hashcode哈希码,这样对象的哈希code对应的哈希value的值就有了,即这一步的主要作用是给当前对象的hashcode生成一个hash值


c99dabf979d94668b00abc780b62e7ea.png


获取完这个唯一标识哈希值后,会接着获取一个名称,该名称和上面的id值一模一样

private String displayName = ObjectUtils.identityToString(this);

5,跟着断点继续往下走,接下来就是实例化这个构造方法,到了这一步和解析xml启动流程的一样,也是有一个默认的AntPathMatcher进行路径匹配

protected ResourcePatternResolver getResourcePatternResolver() {
  return new PathMatchingResourcePatternResolver(this);
}

这里主要是为了获取资源处理器和加载器,用于加载一些资源和加载一些类加载器等

private PathMatcher pathMatcher = new AntPathMatcher();
//获取资源加载器
public PathMatchingResourcePatternResolver(ResourceLoader resourceLoader) {
  Assert.notNull(resourceLoader, "ResourceLoader must not be null");
  this.resourceLoader = resourceLoader;
}

6,接下来继续往下debug,可以发现会进入 GenericApplicationContext 这个构造方法,从这里开始,就构建了这默认的bean工厂DefaultListableBeanFactory

public GenericApplicationContext() {
    //构建默认的Bean工程
  this.beanFactory = new DefaultListableBeanFactory();
}

其类图如下,可以发现其功能是有多么的强大


e2f0a1db3f0f4b1a8708f677949a2577.png


这个默认的BeanFactory的构造方法如下,只是初始化了父类的构造方法

public DefaultListableBeanFactory() {
  super();
}

接下来查看其父类的构造方法,除了忽略一些依赖接口之外,也是只初始化了父类

public AbstractAutowireCapableBeanFactory() {
  super();
    //忽略的依赖接口
  ignoreDependencyInterface(BeanNameAware.class);
  ignoreDependencyInterface(BeanFactoryAware.class);
  ignoreDependencyInterface(BeanClassLoaderAware.class);
}

随后调用的父类的构造方法如下,该类是一个抽象类

public AbstractBeanFactory() {
}

随后再次根据断点进入 DefaultSingletonBeanRegistry 这个类里面,里面包含存储对象缓存池

//一级缓存 这个就是我们大名鼎鼎的单例缓存池 用于保存我们所有的单实例bean
private final Map < String, Object > singletonObjects = new ConcurrentHashMap < > (256);
//三级缓存 该map用户缓存 key为 beanName  value 为ObjectFactory(包装为早期对象)
private final Map < String, ObjectFactory << ? >> singletonFactories = new HashMap < > (16);
//二级缓存 ,用户缓存我们的key为beanName value是我们的早期对象(对象属性还没有来得及进行赋值) 
private final Map < String, Object > earlySingletonObjects = new HashMap < > (16);
//已注册的单例名称set
private final Set < String > registeredSingletons = new LinkedHashSet < > (256);
//该集合用户缓存当前正在创建bean的名称
  private final Set<String> singletonsCurrentlyInCreation = Collections.newSetFromMap(new ConcurrentHashMap<>(16));
//排除当前创建检查的
  private final Set<String> inCreationCheckExclusions = Collections.newSetFromMap(new ConcurrentHashMap<>(16));
...

至此,bean工厂就初始化完成


7,AnnotationConfigApplicationContext 的父类构造器全部执行完成之后,就会再次回到当前类的构造器

public AnnotationConfigApplicationContext() {
    //创建一个读取注解的Bean定义读取器
    //完成了spring内部BeanDefinition的注册(主要是后置处理器)
  this.reader = new AnnotatedBeanDefinitionReader(this);
  //创建BeanDefinition扫描器
  this.scanner = new ClassPathBeanDefinitionScanner(this);
}

8,先看这个AnnotatedBeanDefinitionReader ,见名知意就知道这是创建一个bean定义的读取器

public AnnotatedBeanDefinitionReader(BeanDefinitionRegistry registry) {
  this(registry, getOrCreateEnvironment(registry));
}

接下来进入这个this方法,熟悉获取环境环节又出现了,在上面就已经获取到了系统的全部环境个属性,所以这里获取返回即可。

private static Environment getOrCreateEnvironment(BeanDefinitionRegistry registry) {
  Assert.notNull(registry, "BeanDefinitionRegistry must not be null");
    //如果Environment存在,则获取直接返回
  if (registry instanceof EnvironmentCapable) {
    return ((EnvironmentCapable) registry).getEnvironment();
  }
    //不存在则创建一个标准的环境
  return new StandardEnvironment();
}

如何创建一个标准环境,获取全部的系统环境和系统属性,在xml分析流程的时候详细的讲过。获取完标准环境之后,会将这个获取到的上下文的对象,赋值给read读取器,并处理一些条件注解,以及一些后置处理器等

public AnnotatedBeanDefinitionReader(BeanDefinitionRegistry registry, Environment environment) {
  Assert.notNull(registry, "BeanDefinitionRegistry must not be null");
  Assert.notNull(environment, "Environment must not be null");
  //把ApplicationContext对象赋值给AnnotatedBeanDefinitionReader
  this.registry = registry;
  //用户处理条件注解 @Conditional os.name
  this.conditionEvaluator = new ConditionEvaluator(registry, environment, null);
  //注册一些内置的后置处理器
  AnnotationConfigUtils.registerAnnotationConfigProcessors(this.registry);
}

条件处理,如一些条件判断等,判断一些环境设置,资源加载对象,类加载器对象等

public ConditionContextImpl(@Nullable BeanDefinitionRegistry registry,
  @Nullable Environment environment, @Nullable ResourceLoader resourceLoader) {
  //ioc 容器applicationContext对象
  this.registry = registry;
  //bean工厂对象
  this.beanFactory = deduceBeanFactory(registry);
  //设置环境对象
  this.environment = (environment != null ? environment : deduceEnvironment(registry));
  //资源加载对象
  this.resourceLoader = (resourceLoader != null ? resourceLoader : deduceResourceLoader(registry));
  //类加载器对象
  this.classLoader = deduceClassLoader(resourceLoader, this.beanFactory);
}

这里就是去注册一些后置处理器

public static void registerAnnotationConfigProcessors(BeanDefinitionRegistry registry) {
  registerAnnotationConfigProcessors(registry, null);
}

如注册实现Order接口,加了@Lazy的注解,加了@Autowired注解,@Required属性,JSR规范的注解等等。会将实现了这些注解的接口,或者有这些属性的参数等,会注册成一个 BeanDefinition 先存在Set集合中


fda7e880801c474da467be7a17f71010.png


10,再看这个 ClassPathBeanDefinitionScanner 对象,首先会调用他的构造方法实例化对象

public ClassPathBeanDefinitionScanner(BeanDefinitionRegistry registry) {
  this(registry, true);
}

一直到调用四个参数的构造方法

public ClassPathBeanDefinitionScanner(BeanDefinitionRegistry registry, boolean useDefaultFilters,
  Environment environment, @Nullable ResourceLoader resourceLoader) {
  this.registry = registry;
  if (useDefaultFilters) {
    registerDefaultFilters();
  }
  //设置环境对象
  setEnvironment(environment);
  //设置资源加载器
  setResourceLoader(resourceLoader);
}

首先会注册一个默认的过滤器registerDefaultFilters 如下


62db07808d6045b0b31b7dc293457a80.png


在这个类中,会定义两个集合,这个就和springboot的主启动器那里的一样,可以排除哪些类不被扫描

//包含的集合
private final List<TypeFilter> includeFilters = new LinkedList<>();
//排除的集合
private final List<TypeFilter> excludeFilters = new LinkedList<>();

在这个 registerDefaultFilters 方法中,第一句就是将有Component注解的类加进来,所以在这一步全部加了这个注解的都会被扫描,并生成bean定义,其他的就是一些JSR规范等

//加入扫描我们的@Component的
this.includeFilters.add(new AnnotationTypeFilter(Component.class));

注册完默认的过滤器之后,接下来就是设置环境对象,设置加载资源等,这些前面都已经拿到。至此整个扫描阶段完成。除了这个@Component这个注解会被扫描,@Service @Respository @Controller等这些注解在这个类下面都会被扫描


至此,第一阶段super阶段结束,这个阶段主要做的事情总结如下:获取整个系统的类加载器,注册factoryLog日志工厂,获取整个系统的环境和属性,创建对象的哈希码,构建默认的bean工厂,将一些条件注解、后置处理器等读取成beanDefinition,将一些常用的注解扫描成bean定义


2,register(annotatedClasses)

上面通过这个reader读取器和scan扫描器将一些注解都转换成了beanDefinition,接下来要做的事情就是将这些bean定义注册。

//定义读取器
private final AnnotatedBeanDefinitionReader reader;
public void register(Class<?>... annotatedClasses) {
  Assert.notEmpty(annotatedClasses, "At least one annotated class must be specified");
  this.reader.register(annotatedClasses);
}

其注册方式如下,会遍历所有的这个注解类

public void register(Class<?>... annotatedClasses) {
  for (Class<?> annotatedClass : annotatedClasses) {
    registerBean(annotatedClass);
  }
}
public void registerBean(Class<?> annotatedClass) {
  doRegisterBean(annotatedClass, null, null, null);
}

接下来进入真正的注册方法 doRegisterBean


19e46c4cd0c247ce845f5fac1da610f2.png


首先第一步会创建一个 AnnotatedGenericBeanDefinition 的类,用于存储@Configuration注解的类

public AnnotatedGenericBeanDefinition(Class<?> beanClass) {
  setBeanClass(beanClass);
  this.metadata = new StandardAnnotationMetadata(beanClass, true);
}

随后会判断是否要跳过注解,如一些不满足条件的,@Condition注解

//判断是否需要跳过注解,spring中有一个@Condition注解,当不满足条件,这个bean就不会被解析
if (this.conditionEvaluator.shouldSkip(abd.getMetadata())) {
  return;
}

随后设置Bean的作用域,默认为单例

//解析bean的作用域,如果没有设置的话,默认为单例
ScopeMetadata scopeMetadata = this.scopeMetadataResolver.resolveScopeMetadata(abd);
abd.setScope(scopeMetadata.getScopeName());

随后解析一些通用注解,将这些注解填充到原先生成的bean定义当中

//解析通用注解,填充到AnnotatedGenericBeanDefinition,
//解析的注解为Lazy,Primary,DependsOn,Role,Description
AnnotationConfigUtils.processCommonDefinitionAnnotations(abd);

最后一步进行注册操作,

BeanDefinitionReaderUtils.registerBeanDefinition(definitionHolder, this.registry);

其注册成bean定义的方式如下,

//将bean定义注册到bean工厂中
public static void registerBeanDefinition(
  BeanDefinitionHolder definitionHolder, BeanDefinitionRegistry registry)
throws BeanDefinitionStoreException {
  // 在主名称中注册bean定义
  String beanName = definitionHolder.getBeanName();
  registry.registerBeanDefinition(beanName, definitionHolder.getBeanDefinition());
  // 通过别名注册成bean定义
  String[] aliases = definitionHolder.getAliases();
  if (aliases != null) {
    for (String alias: aliases) {
      registry.registerAlias(beanName, alias);
    }
  }
}

注册bean定义的registerBeanDefinition方法如下

@Override
public void registerBeanDefinition(String beanName, BeanDefinition beanDefinition)
    throws BeanDefinitionStoreException {
    ...
}

如果这个bean定义已经存在,其内部又大量的条件判断,如bean定义的名称不能相同,权限大的优先存在不能被覆盖等等

5b47f6b1e81d4adc8dc3ed98f415cb90.png



如果bean定义不存在,会将这个beanDefinition加入到 beanDefinitionMap 集合中

this.beanDefinitionMap.put(beanName, beanDefinition);

0fe0df246aef420b958da15ee7c2d7f0.png


如果当前map集合中没有这个bean定义,且这个bean定义是单例的,则会将之前的reset,就是将之前的bean定义给删除,如下,会现将以前的单例bean定义删除,随后再将这个最新的单例bean定义加入到map集合中

protected void resetBeanDefinition(String beanName) {
  clearMergedBeanDefinition(beanName);
  destroySingleton(beanName);
  // Reset all bean definitions that have the given bean as parent (recursively).
  for (String bdName : this.beanDefinitionNames) {
    if (!beanName.equals(bdName)) {
      BeanDefinition bd = this.beanDefinitionMap.get(bdName);
      if (beanName.equals(bd.getParentName())) {
        resetBeanDefinition(bdName);
      }
    }
  }
}

至此,beanDefinition的注册阶段完成。注册阶段的总结如下:就是将一些beanDefinition进行一些解析,设置一些属性和作用域,对一些bean定义进行验证是否需要注册,注册时需要验证会不会覆盖问题,注册后将beanDefinition存储到beanDefinitionMap中


3,总结

通过上面两步可以发现,用注解的方式来作为获取上下文并且启动spring,其复杂度远远超过使用xml的方式,并且xml方式里面有的步骤这里面全有。


这两部总结到一起如下:获取整个系统的类加载器,注册factoryLog日志工厂,获取整个系统的环境和属性,构建默认的bean工厂,将一些条件注解、后置处理器等读取成beanDefinition,将一些常用的注解扫描成beanDefinition,随后将这些beanDefinition进行解析,设置属性和作用域,验证是否需要注册,注册时需要验证会不会覆盖问题等操作,注册后将beanDefinition存储到beanDefinitionMap中


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
2月前
|
XML Java 数据格式
SpringBoot入门(8) - 开发中还有哪些常用注解
SpringBoot入门(8) - 开发中还有哪些常用注解
56 0
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
86 2
|
8天前
|
Java Spring
【Spring】方法注解@Bean,配置类扫描路径
@Bean方法注解,如何在同一个类下面定义多个Bean对象,配置扫描路径
131 73
|
3天前
|
Java Spring 容器
【SpringFramework】Spring IoC-基于注解的实现
本文主要记录基于Spring注解实现IoC容器和DI相关知识。
34 21
|
8天前
|
存储 Java Spring
【Spring】获取Bean对象需要哪些注解
@Conntroller,@Service,@Repository,@Component,@Configuration,关于Bean对象的五个常用注解
|
8天前
|
Java Spring
【Spring配置】idea编码格式导致注解汉字无法保存
问题一:对于同一个项目,我们在使用idea的过程中,使用汉字注解完后,再打开该项目,汉字变成乱码问题二:本来a项目中,汉字注解调试好了,没有乱码了,但是创建出来的新的项目,写的注解又成乱码了。
|
29天前
|
存储 缓存 Java
Spring面试必问:手写Spring IoC 循环依赖底层源码剖析
在Spring框架中,IoC(Inversion of Control,控制反转)是一个核心概念,它允许容器管理对象的生命周期和依赖关系。然而,在实际应用中,我们可能会遇到对象间的循环依赖问题。本文将深入探讨Spring如何解决IoC中的循环依赖问题,并通过手写源码的方式,让你对其底层原理有一个全新的认识。
50 2
|
2月前
|
前端开发 Java Spring
Spring MVC核心:深入理解@RequestMapping注解
在Spring MVC框架中,`@RequestMapping`注解是实现请求映射的核心,它将HTTP请求映射到控制器的处理方法上。本文将深入探讨`@RequestMapping`注解的各个方面,包括其注解的使用方法、如何与Spring MVC的其他组件协同工作,以及在实际开发中的应用案例。
47 4
|
2月前
|
前端开发 Java 开发者
Spring MVC中的请求映射:@RequestMapping注解深度解析
在Spring MVC框架中,`@RequestMapping`注解是实现请求映射的关键,它将HTTP请求映射到相应的处理器方法上。本文将深入探讨`@RequestMapping`注解的工作原理、使用方法以及最佳实践,为开发者提供一份详尽的技术干货。
131 2
|
2月前
|
前端开发 Java Spring
探索Spring MVC:@Controller注解的全面解析
在Spring MVC框架中,`@Controller`注解是构建Web应用程序的基石之一。它不仅简化了控制器的定义,还提供了一种优雅的方式来处理HTTP请求。本文将全面解析`@Controller`注解,包括其定义、用法、以及在Spring MVC中的作用。
57 2