pandas数据合并

简介: pandas数据合并

1.merge数据合并


import pandas as pd
import numpy as np


1.1merge默认合并数据


merge合并时默认是内连接(inner)


price = pd.DataFrame({'fruit':['apple','grape','orange','orange'],'price':[8,7,9,11]})
amount = pd.DataFrame({'fruit':['apple','grape','orange'],'amout':[5,11,8]})
display(price,amount,pd.merge(price,amount))
#------------------------------------------------------------------------
    fruit price
0 apple 8
1 grape 7
2 orange  9
3 orange  11
    fruit amout
0 apple 5
1 grape 11
2 orange  8
    fruit price amout
0 apple 8     5
1 grape 7     11
2 orange  9     8
3 orange  11     8


1.2左连接和右连接


pd.merge(price,amount,how = 'left')#左连接
pd.merge(price,amount,how = 'right')#右连接

1.3 merge通过多个键合并


left = pd.DataFrame({'key1':['one','one','two'],'key2':['a','b','a'],'value1':range(3)})
right = pd.DataFrame({'key1':['one','one','two','two'],'key2':['a','a','a','b'],'value2':range(4)})
display(left,right,pd.merge(left,right,on = ['key1','key2'],how = 'left'))
#--------------------------------------------------------------------------------
    key1  key2  value1
0 one     a     0
1 one     b     1
2 two     a     2
    key1  key2  value2
0 one     a     0
1 one     a     1
2 two     a     2
3 two     b     3
    key1  key2  value1  value2
0 one     a     0     0.0
1 one     a     0     1.0
2 one     b     1     NaN
3 two     a     2     2.0


2.concat数据连接


concat方法默认情况下会按行的方向堆叠数据,如果在列向上连接,设置axis=1。


2.1两个Series的数据连接


s1 = pd.Series([0,1],index = ['a','b'])
s2 = pd.Series([2,3,4],index = ['a','d','e'])
s3 = pd.Series([5,6],index = ['f','g'])
print(pd.concat([s1,s2,s3]))  #Series行合并
#----------------------------------------------
a    0
b    1
a    2
d    3
e    4
f    5
g    6


2.2两个DataFrame的数据连接


data1 = pd.DataFrame(np.arange(6).reshape(2,3),columns = list('abc'))
data2 = pd.DataFrame(np.arange(20,26).reshape(2,3),columns = list('ayz'))
data = pd.concat([data1,data2],axis = 0,sort=False)
display(data1,data2,data)
#--------------------------------------------------------------------------
    a b c
0 0 1 2
1 3 4 5
    a y z
0 20  21  22
1 23  24  25
    a b c y     z
0 0 1.0 2.0 NaN     NaN
1 3 4.0 5.0 NaN     NaN
0 20  NaN NaN 21.0  22.0
1 23  NaN NaN 24.0  25.0


3.combine_first合并数据


如果需要合并的两个DataFrame存在重复索引,可以使用combine_first方法。


s6.combine_first(s5)
#-----------------------
    0 1
a 0.0 0.0
b 1.0 5.0
f NaN 5.0
g NaN 6.0

目录
相关文章
|
1月前
|
监控 物联网 数据处理
Pandas高级数据处理:数据流式计算
本文介绍了如何使用 Pandas 进行流式数据处理。流式计算能够实时处理不断流入的数据,适用于金融交易、物联网监控等场景。Pandas 虽然主要用于批处理,但通过分块读取文件、增量更新 DataFrame 和使用生成器等方式,也能实现简单的流式计算。文章还详细讨论了内存溢出、数据类型不一致、数据丢失或重复及性能瓶颈等常见问题的解决方案,并建议在处理大规模数据时使用专门的流式计算框架。
159 100
Pandas高级数据处理:数据流式计算
|
2月前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
116 72
|
1月前
|
数据采集 数据可视化 数据处理
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
74 31
|
22天前
|
缓存 数据可视化 BI
Pandas高级数据处理:数据仪表板制作
在数据分析中,面对庞大、多维度的数据集(如销售记录、用户行为日志),直接查看原始数据难以快速抓住重点。传统展示方式(如Excel表格)缺乏交互性和动态性,影响决策效率。为此,我们利用Python的Pandas库构建数据仪表板,具备数据聚合筛选、可视化图表生成和性能优化功能,帮助业务人员直观分析不同品类商品销量分布、省份销售额排名及日均订单量变化趋势,提升数据洞察力与决策效率。
39 12
|
1月前
|
消息中间件 数据挖掘 数据处理
Pandas高级数据处理:数据流式计算
在大数据时代,Pandas作为Python强大的数据分析库,在处理结构化数据方面表现出色。然而,面对海量数据时,如何实现高效的流式计算成为关键。本文探讨了Pandas在流式计算中的常见问题与挑战,如内存限制、性能瓶颈和数据一致性,并提供了详细的解决方案,包括使用`chunksize`分批读取、向量化操作及`dask`库等方法,帮助读者更好地应对大规模数据处理需求。
56 17
|
23天前
|
数据采集 存储 数据可视化
Pandas高级数据处理:数据报告生成
Pandas 是数据分析领域不可或缺的工具,支持多种文件格式的数据读取与写入、数据清洗、筛选与过滤。本文从基础到高级,介绍如何使用 Pandas 进行数据处理,并解决常见问题和报错,如数据类型不一致、时间格式解析错误、内存不足等。最后,通过数据汇总、可视化和报告导出,生成专业的数据报告,帮助你在实际工作中更加高效地处理数据。
30 8
|
1月前
|
数据采集 并行计算 数据可视化
Pandas高级数据处理:数据报告生成实战指南
数据报告生成面临数据质量、计算性能、呈现形式和自动化等核心挑战。常见问题包括缺失值导致统计失真、内存溢出及可视化困难。解决方案涵盖数据清洗、分块处理、安全绘图模板等。通过模块化设计、异常处理机制和性能优化策略,如使用`category`类型、并行计算等,可大幅提升效率。最佳实践建议建立数据质量检查清单、版本控制和自动化测试框架,确保系统具备自适应能力,提升报告生成效率300%以上。
61 12
|
2月前
|
数据采集 供应链 数据可视化
Pandas数据应用:供应链优化
在当今全球化的商业环境中,供应链管理日益复杂。Pandas作为Python的强大数据分析库,能有效处理库存、物流和生产计划中的大量数据。本文介绍如何用Pandas优化供应链,涵盖数据导入、清洗、类型转换、分析与可视化,并探讨常见问题及解决方案,帮助读者在供应链项目中更加得心应手。
64 21
|
2月前
|
机器学习/深度学习 搜索推荐 数据挖掘
Pandas数据应用:广告效果评估
在数字化营销中,广告效果评估至关重要。Pandas作为Python的强大数据分析库,在处理广告数据时表现出色。本文介绍如何使用Pandas进行广告效果评估,涵盖数据读取、预览、缺失值处理、数据类型转换及常见报错解决方法,并通过代码案例详细解释。掌握这些技能,可为深入分析广告效果打下坚实基础。
53 17
|
2月前
|
机器学习/深度学习 数据采集 供应链
Pandas数据应用:销售预测
本文介绍如何使用Pandas进行销售预测。首先,通过获取、清洗和可视化历史销售数据,确保数据质量并理解其特征。接着,进行特征工程,构建线性回归等模型进行预测,并评估模型性能。最后,针对常见问题如数据类型不匹配、时间格式错误、内存不足和模型过拟合提供解决方案。掌握这些步骤,可有效提升销售预测的准确性,助力企业优化库存管理和提高客户满意度。
71 17

热门文章

最新文章