java创建线程的方式到底有几种?(详解)

简介: java创建线程的方式到底有几种?(详解)

一,创建多线程的方式

1,官方解释

在oracle的官方文档中,其官方文档链接如下:https://docs.oracle.com/javase/8/docs/api/index.html


在jdk8中,很明确的表明了创建线程的方式只有两种,重点就是这句 There are two ways to create a new thread of execution. One is to declare a class to be a subclass of Thread . The other way to create a thread is to declare a class that implements the Runnable interface.


翻译过来的意思就是说:有两种方法可以创建一个新的执行线程。一种方法是将一个类声明为Thread的子类。创建线程的另一种方法是声明一个实现Runnable 接口的类


这是权威的官方文档说的,创建线程的方式只有两种,接下来分析一下这两种创建线程的方式的优劣和本质,以及分析一下其他的创建线程方式的底层,如线程池,Future等,看看这些创建线程方式的本质是不是就是官方文档上面的两种方式。

c0c1ccbf06f94d9bae31db56b3dcd5ab.png


2,实现Runnable接口

其底层就是将实现了Runnable的类作为参数放在创建线程的构造方法中,并且在实现Runnable的类中重写run方法,实现Thread和run方法的解耦

public class RunnableTest implements Runnable{
    public static void main(String[] args) {
        Thread thread = new Thread(new RunnableTest());
        //启动线程
        thread.start();
    }
    //重写run方法
    @Override
    public void run() {
        System.out.println("hello,runnable");
    }
}

3,继承Thread类

其底层就是利用继承的方式创建一个线程,然后在继承Thread的类中重写run方法。

public class ThreadTest extends Thread{
    @Override
    public void run() {
        System.out.println("hello,Thread");
    }
    public static void main(String[] args) {
        //启动线程
        new ThreadTest().start();
    }
}

3,二者区别

3.1,本质区别

无论是使用方式一还是方式二,最终都是通过new Thread的方式来创建线程,但是二者的本质区别就是run方法在何处使用。实现Runnable方式的run方法在实现类中重写run方法,实现了解耦;而继承Thread的方式,如果在出现多继承的情况下,那么中间的类里面的run方法就可能会被覆盖,从而导致run方法中的内容丢失,运行不了。


准确的讲,就是只有一种方式创建线程,就是通过构造Thread类来实现,但是从线程的执行单元来看,执行线程的单元有两种,就是上面所说的根据不同位置重写的run方法来区分。


3.2,优先考虑使用第一种

从解耦的角度来看: 方式一中创建Thread线程和run方法耦合开,方式二耦合在一起,因此方式一优先考虑和选择


从资源的节约上来看: 在每次出现一个任务时,方式二都得手动去创建一个线程,那么线程的创建和销毁都会消耗比较大的资源。而方式一只需要实现runnable接口即可,然后将实现的类作为参数加入到Thread()中,而线程Thread可以通过线程池这样的工具创建和管理,这样就可以减少线程的创建和销毁,这样也是优先考虑和选择方式一。


从继承角度来看: 一个子类只能继承一个父类,那么第二种方式是采用继承的方式,那么只能继承这一种类,这样第二种方式大大的限制了可扩展性,并且多继承的话,可能出现父类的run方法被子类重写,导致父类里面的run方法被覆盖。因此也是优先考虑和选择方式一。


所以终上所述,优先选择方式一。即一般创建线程时,优先使用实现Runnable接口这种方式来创建多线程。


二,误以为是创建线程的几种新方式

1,线程池创建线程的本质

在官方文档中,并没有说线程池是一个可以单独的创建线程的一个方式,但是在日常开发中,我们又是经常通过线程池来创建,管理和监控线程池,那么线程池创建线程的本质到底是什么呢?接下来主要分析一下线程池创建线程的底层源码。


ExecutorService executorService = Executors.newCachedThreadPool();

其内部主要是通过一个ThreadPoolExecutor的执行器,而创建线程主要是通过线程工厂创建,因此主要分析这个defaultThreadFactory类

public ThreadPoolExecutor(int corePoolSize,
              int maximumPoolSize,
                  long keepAliveTime,
              TimeUnit unit,
              BlockingQueue < Runnable > workQueue) {
  this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
  Executors.defaultThreadFactory(), defaultHandler);
}

然而在这个线程池创建的线程,如下图,在这个newThead方法中,很清楚的可以知道是需要传一个Runnable的实现到这个参数中,然后通过new Thread(target)的方式来创建线程。

public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
        return t;
}

c87149894c604e459f516c239c829fdf.png


即通过线程池的方式创建线程也是使用的是方式一,实现Runaable的接口来完成的,因此使用这个线程池创建线程不能单独作为一种新的创建线程的方式。


2,FutureTask和Callable的本质

2.1,FutureTask和Callable和Thread的结合使用

在这个模式中,先重写call方法,由于在new Thread的构造方法中并没有 Callable 这种类的参数,因此需要借助 FutureTask 这个类来将Callable和这个Thread类就行一个连接。其用法如下

public class FutureTaskTest implements Callable {
    @Override
    public Object call() throws Exception {
        return 4;
    }
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //创建Callable
        FutureTaskTest th = new FutureTaskTest();
        //创建FutureTask,需要绑定Callable
        FutureTask<Integer> futureTask = new FutureTask<Integer>(th);
        //开启线程
        new Thread(futureTask).start();
        //获取Callable的返回值
        Integer result = futureTask.get();
        System.out.println(result);
    }
}

所以说这个FutureTask就是类似于一个中间类,接下来查看一下这个FutureTask这个类的底层,这个类实现了 RunnableFuture 接口,而这个接口继承了这个Runnable这个接口。那么可以说这个FutureTask就是这个Runnable的一个具体的实现了

//实现RunnableFuture接口
class FutureTask<V> implements RunnableFuture<V>{}
//RunnableFuture接口继承了Runnable类
public interface RunnableFuture<V> extends Runnable, Future<V>

如图,得知这个RunnableFuture接口继承了Runnable类,并且这是熟知的大名鼎鼎的 Doug Lea,李二狗大师写的。


6e22119345fa48758e018dae446caa77.png


而这种方式开启线程也是使用 new Thread(target) 的方式实现,而这个target又是Runnable的实现,那么这种方式又是符合方式一,实现Runaable的接口来完成的,因此使用这个Callable创建线程不能单独作为一种新的创建线程的方式。


2.2,FutureTask和Runnable和Thread的结合使用

在这个模式中,显而易见使用的是第一种方式,而FutureTask又是Runnable的一个具体的实现,那么这种方式也符合方式一,即通过实现Runnable接口的方式来完成的,因此这种方式也不能作为一种新的创建线程的方式。


public static class RunnableTest implements Runnable {
    @Override
    public void run() {
        System.out.println("RunnableTest");
    }
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
    //创建Runnable对象
    RunnableTest runnable = new RunnableTest();
    Integer result = null;
    //创建FutureTask,需要绑定Runnable
    FutureTask<Integer> futureTask = new FutureTask<Integer>(runnable,result);
    new Thread(futureTask).start();
}

3,定时器工具类创建线程的本质

在这个 TimerTasks 类中,通过Timer创建一个单线程的任务定时器,然后通过调用 schedule 方法执行这个任务。

public class TimerTasks {
  public static void main(String[] args) {
    Timer timer = new Timer();
    timer.schedule(new TimerTask() {
      public void run() {
        System.out.println("=============定时任务已经开启========" + System.currentTimeMillis());
      }
    }, 0, 1000);
  }
}

接下来主要看这个 schedule 方法,如下图。


cd8f341eda9f4e42a8d87dbdfd0c0b8e.png


重点查看里面的 sched 方法里面的第一个参数,是一个 TimerTask 的抽象类,并且进入这个抽象类的源码又可以发现,这个类实现了 Runnable 接口,那么这种方式也符合方式一,即通过实现Runnable接口的方式来完成的,因此这种方式也不能作为一种新的创建线程的方式。

public abstract class TimerTask implements Runnable {...}

657de244cd7e4c83bf8d2fd89f557406.png


三,总结

通过上面几种创建线程的方式举例,那么这个创建线程到底有几种方式的答案相信已经呼之欲出了,没错就是一开始所说的两种:一种是通过实现Runnable接口,另一种就是继承Thread类。并且从本质上来说,只有一种,就是通过创建 Thread 类实现,而上面的两种也是通过run方法在不同的位置的实现来区分的。而下面的几种创建线程的方式虽然用的多,但是究其本质,其底层源码还是脱离不了这两种创建线程的方式的。

相关文章
|
8天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
10天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
10天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
10天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
33 3
|
10天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
90 2
|
18天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
46 6
|
2月前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
1月前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
2月前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
27天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####