用AI攻克“智能文字识别创新赛题”,这场大学生竞赛掀起了什么风潮?

本文涉及的产品
小语种识别,小语种识别 200次/月
NLP 自学习平台,3个模型定制额度 1个月
教育场景识别,教育场景识别 200次/月
简介: 用AI攻克“智能文字识别创新赛题”,这场大学生竞赛掀起了什么风潮?

一、前言

1.1 大赛介绍

中国大学生服务外包创新创业大赛作为服务外包产业领域唯一的国家级赛事,位列“全国普通高校学科竞赛排行榜评估体系”,自2010年以来已连续举办14届,分为区域赛和全国决赛两个阶段。本届大赛吸引了803所全国院校的8006支团队报名参赛,报名团队数再创新高。其中4097支团队通过审核进入初赛,216 支队伍进入全国总决赛。

本次竞赛内容紧密围绕企业发展中的现实问题,与产业结合度更紧密,特别是智能文字识别技术。这项技术融合了多种先进技术,如智能图像处理、光学字符识别、深度学习、自然语言处理等,能够在多场景下进行文字信息的识别和分析,具有广泛的应用价值。无论是在生产、教育还是生活中,智能文字识别技术都有着重要的作用,能够提高工作效率、降低成本、提升用户体验。

1.2 项目背景

记账是一项重要的生活习惯,可以帮助我们更好地了解自己的支出与收入,以便做出更明智的财务决策。然而,目前市面上大多数的记账 APP 需要手工录入才能完成记账,或者需要获取外卖、支付等应用程序的信息才能进行消费记录,存在功能不齐全、隐私过度收集等问题。尤其是对于中老年人来说,使用记账本应用十分吃力,因为他们对于这些新技术的使用并不熟练。针对这些问题,我们可以通过技术创新来提供更加便捷、高效的记账工具,让人们更好地管理自己的财务。

合合信息作为人工智能科技企业的代表,积极参与了赛题的拟定与赛道建设,设立了“基于智能文字场景个人财务管理创新应用”的相关议题,与众多高校学子共同探索技术创新与落地的多重可能,共同探讨如何通过技术手段解决老年人记账难题,以及如何优化已有软件产品以更好地满足现代人群的需求。

这场竞赛不仅是一次技术交流与创新的盛会,更是对社会问题的思考与解决的起点。青年学子们的参与不仅为解决记账难题和优化软件产品提供了新的思路和方向,也为推动科技进步与社会发展贡献了自己的力量。

二、基于智能文字场景个人财务管理创新应用

在基于智能文字场景个人财务管理创新应用这个项目中,“中国计量大学-去南京整薯条”队伍的作品深深吸引了我,下面我们就来看看作品情况。

2.1 作品方向

“中国计量大学-去南京整薯条”队伍作品实现了登录登出、数据存贮功能、消费信息录入、消费数据的展示与编辑、自动判断消费类型、多维度展示消费数据、支持消费凭据类型等等。这里我们主要介绍消费信息录入创新功能中最重要的技术:票据识别模型。
图片.png

2.2 票据识别模型

“去南京整薯条”队伍在使用合合信息提供的商铺小票识别接口基础上,
使用提供的通用文字识别将票据上的信息全部提取出来,并用 TextCNN 模型和 Bert 预训练+微调分别对所有提取出来的词句进行分类,返回最有可能为商铺名的短语。

2.2.1 文本卷积神经网络TextCNN

文本卷积神经网络(TextCNN)是一种常用于文本分类自然语言处理任务的深度学习模型。优点在于它能够通过卷积操作捕捉文本中的局部特征,实现对不同长度的词组合的有效建模。同时,TextCNN具有参数共享和局部连接的特性,减少了模型的参数量和计算复杂度。它还能够通过多尺度感知提取文本的全局和局部信息,从而更好地理解文本的语义和结构。此外,TextCNN在处理大规模文本数据时具有高效性能,能够快速处理大量的文本信息。综上所述,“去南京整薯条”队伍选择 TextCNN 作为模型之一,来进行票据识别。

在本任务中,由于商铺名短语识别任务涉及的相关短语包含大量特定的词语,如果 使用通用的文字词向量库会导致分类性能下降。故在本任务中,将测试集中所有数据进行词向量映射,使该方式生成的词向量更加灵活,并且更加适用于商铺名的识别。

“去南京整薯条”队伍训练的 TextCNN 模型中,输入的词向量大小为 30*50;模型 采用 4 种不同的区域大小,其大小分别为 2、3、4、5。对于每一种区域大小,都使用了 2 个不同的卷积核,通过 Relu 函数进行激活,生成特征图。再通过 max-pooling,所有 特征图进行串联,从而形成一个单一的特征向量。经过全连接层,输出结果。TextCNN模型图如所示:

图片.png

此模型局部特征提取能力强,文本分类表现优秀。

2.2.2 Bert 预训练+微调

Bert 是一种双向预训练语言模型,它可以用于各种自然语言处理任务,如文本分类、命名实体识别、情感分析等。BERT的训练分为两个步骤:预训练和微调。在预训练阶段,BERT使用大量的无监督文本通过自监督训练的方式(通过使用受完形填空任务启发的Masked Language Model预训练目标)训练,把文本中包含的语言知识(包括:词法、语法、语义等特征)以参数的形式编码到Transformer-encoder layer中。在微调阶段,BERT使用少量的有标签数据进行微调,以适应特定任务。

“去南京整薯条”队伍使用 Hugging Face 自然语言处理(NLP)社区提供的“Transformers” 库中的“bert-base-chinese”模型作为预训练模型,并使用其配套的分词器来进行文本序列的特征提取。 使用了一个简单的线性层和全连接层来构建下游任务模型进行微调训练。Bert预训练模型+微调模式图如下:

图片.png

此模型兼顾序列中所有位置的信息,可以更好理解语义信息。

2.2.3 模型对比

图片.png

由表可知,Bert 预训练+微调的模式在训练集/测试集正确率和F1得分均明显超过 TextCNN,所以其团队在本项目中选用 Bert 预训练+微调模型。

2.2.4 效果展示

可以看到最终实现的效果,“去南京整薯条”队伍通过合合信息提供的通用文字识别接口与大模型的结合成功优化了票据信息识别和自动分类问题:
图片.png

2.3 票据文字识别接口

传统OCR识别采用统计模式,处理流程较长,典型的传统OCR识别流程如图所示:

图片.png

传统OCR识别方法存在诸多弊端:
1、对于图像质量差、模糊、亮度不均匀、反光、倾斜等各种问题识别效果很差。
2、对于自然场景下拍摄的复杂样本基本无法处理,没有修改提升空间,可用性不高。

针对以上问题,合合信息打造了一款智能文字识别训练平台。对于较大难度的证件类和票据类性能测试为例,面对旋转、阴影、反光、褶皱、形变、模糊、多语言、低像素、光照不均等复杂场景,合合信息智能文字识别产品均有较高的识别准确率,字符准确率分别为99.21%和99.59%,字段准确率分别为97.87%和98.42%。
通过融合不同行业和场景,支持增值税发票、火车票、出租车票、飞机行程单等多种国内外常见票据高精准度识别,提供便捷的票据处理服务。
并且在中国信息通信研究院(以下简称“中国信通院”)“可信ai—ocr智能化服务”评估工作,并获得“增强级”评级:

图片.png

合合信息在自然语言处理、图像识别等领域拥有领先的技术和产品,对于研发大模型得天独厚的条件,期待合合信息在未来能够为用户和行业带来更多的惊喜和创新!

三、未来展望

本次合合信息提出的“基于智能文字场景个人财务管理创新应用”赛题,让学生在真实的业务场景中获得实践经验,消除人才发展目标与市场需求之间的信息不对称,促进校企双方在科研项目和人才培养等方面的深度合作,推动产学研用协同创新发展。

合合信息人力资源部负责人杜杰在大赛闭幕式上表示,未来是人工智能的时代,合合信息希望通过AI“星火计划”等系列人才培养计划和配套分享平台,致力于帮助科技青年在实践中提升专业能力。未来,将继续与高校和行业机构合作,共同探索产学研融合之路,为大学生提供更便捷的创新科技灵感落地渠道,从而实现科技创新和社会进步的双赢。

相关文章
|
16天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
12天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
107 48
|
15天前
|
人工智能 数据挖掘 数据库
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
|
15天前
|
人工智能 数据库 决策智能
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
本文为阿里云瑶池数据库「拥抱Data+AI」系列连载第1篇,聚焦电商行业痛点,探讨如何利用数据与AI技术及分析方法论,为电商注入新活力与效能。文中详细介绍了阿里云Data+AI解决方案,涵盖Zero-ETL、实时在线分析、混合负载资源隔离、长周期数据归档等关键技术,帮助企业应对数据在线重刷、实时分析、成本优化等挑战,实现智能化转型。
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
|
7天前
|
人工智能 开发者
通义灵码融入南京大学 AI 编程创新课,让大学生释放想象力
南京大学软件学院副教授钦老师将通义灵码引入了 X 层级课程《人工智能驱动编程》中,通过将通义灵码智能编码实践与传统编程语言教学融合的方式,让学生切身体会人工智能、大模型技术对编程学习方式带来的改变。
|
5天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
5天前
|
机器学习/深度学习 人工智能 安全
AI与旅游业:旅行规划的智能助手
在数字化浪潮中,人工智能(AI)正重塑旅游业。本文探讨了AI如何通过个性化推荐、智能预测与预警、语音交互与虚拟助手、增强现实体验及可持续发展,提升旅行规划的效率、安全性和趣味性,推动旅游业创新与变革。
|
8天前
|
人工智能 自然语言处理 关系型数据库
从数据到智能,一站式带你了解 Data+AI 精选解决方案、特惠权益
从 Data+AI 精选解决方案、特惠权益等,一站式带你了解阿里云瑶池数据库经典的AI产品服务与实践。
|
8天前
|
人工智能 安全 搜索推荐
AI与能源管理:智能电网的未来
本文探讨了AI与智能电网的融合及其对能源管理的深远影响。智能电网利用先进的信息、通信和AI技术,实现电力的自主、智能化、高效管理。AI在精准预测电力需求、实时监测与故障诊断、智能能源调度、个性化能源服务和优化可再生能源利用等方面发挥关键作用,推动能源管理的高效、智能和可持续发展。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI与法律行业:智能法律咨询
在科技飞速发展的今天,人工智能(AI)正逐渐渗透到法律行业,特别是在智能法律咨询领域。本文探讨了AI在智能法律咨询中的应用现状、优势及挑战,并展望了其未来发展前景。AI技术通过大数据、自然语言处理等手段,提供高效、便捷、低成本且个性化的法律服务,但同时也面临数据隐私、法律伦理等问题。未来,AI将在技术升级、政策推动和融合创新中,为用户提供更加优质、便捷的法律服务。