【Elasticsearch】学好Elasticsearch系列-聚合查询

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【Elasticsearch】学好Elasticsearch系列-聚合查询

先看后赞,养成习惯。

点赞收藏,人生辉煌。

Elasticsearch中的聚合是一种以结构化的方式提取和展示数据的机制。可以把它视为SQL中的GROUP BY语句,但是它更加强大和灵活。

Elasticsearch支持很多类型的聚合,包括:

  1. Metrics Aggregations:这类聚合基于文档字段的数值进行计算并返回一个单一的数值结果。例如最大值(max)、最小值(min)、平均值(average)、总和(sum)、统计信息(stats,包含了上述几种操作),以及其他复杂的聚合如百分数(percentiles)、基数(cardinality)等。
  2. Bucket Aggregations:这类聚合会创建一组buckets,每个bucket对应一个特定的条件或范围,然后文档会根据这些条件或范围被分类到相应的bucket中。常见的包括区间(range)、日期区间(date range)、直方图(histogram)、日期直方图(date histogram)、地理哈希网格(geohash grid)等。
  3. Pipeline Aggregations:这类聚合可以基于其他聚合的结果进行二次计算。比如计算差异、比例、移动平均等。

Elasticsearch的聚合操作支持嵌套,即一个聚合内部可以包含别的子聚合,从而实现非常复杂的数据挖掘和统计需求。

概念

聚合(aggs)不同于普通查询,是目前学到的第二种大的查询分类,第一种即“query”,因此在代码中的第一层嵌

套由“query”变为了“aggs”。用于进行聚合的字段必须是exact value,分词字段不可进行聚合,对于text字段如

果需要使用聚合,需要开启fielddata,但是通常不建议,因为fielddata是将聚合使用的数据结构由磁盘

(doc_values)变为了堆内存(field_data),大数据的聚合操作很容易导致OOM。

doc values 和 fielddata

在 Elasticsearch 中,聚合操作主要依赖于 doc values 或 fielddata 来进行。

  1. Doc values:对于大多数字段类型,Elasticsearch 使用 doc values 进行排序和聚合。doc values 是一种在磁盘上的、列式存储的数据结构,适用于稀疏字段,也就是字段中有很多不同的值。它们默认开启,并且不能被禁用。
  2. Fielddata:对于TEXT字段,doc values 默认是关闭的,因为文本字段通常包含很多不同的值,使用 doc values 会消耗大量内存。这时候,如果需要对文本字段进行聚合或排序,Elasticsearch 使用 fielddata。fielddata 是一个将所有文档的字段值加载到内存的数据结构,使用它可以使得聚合、排序和脚本运行更快,但代价是消耗更多的内存。

当执行聚合操作时,Elasticsearch 需要访问所有匹配文档的字段值。对于非文本字段,默认情况下Elasticsearch 使用 doc values 来实现。对于文本字段,必须首先启用 fielddata。然而,由于 fielddata 占用大量内存,Elasticsearch 默认禁用了它。

对于文本字段,fielddata 默认是禁用的。如果你确实需要对一个文本字段启用 fielddata(虽然大多数场景下不推荐这么做,因为可能导致内存消耗过大),你可以通过更新映射(mapping)来实现。以下是如何在 my_field 字段上启用 fielddata 的示例:

PUT my-index/_mapping
{
  "properties": {
    "my_field": { 
      "type":     "text",
      "fielddata": true
    }
  }
}

注意,更改 fielddata 设置只会影响新的数据,已经索引的数据不会受到更改。如果你想让更改生效,需要重新索引(reindex)你的数据

另外,一般情况下,建议你使用 mapping 中的 keyword 类型来进行聚合、排序或脚本,而不是启用 text 类型的 fielddata。这是因为 keyword 类型字段默认开启了 doc values,比在 text 上启用 fielddata 更加高效且节省内存。

multi-fields(多字段)类型

在 Elasticsearch 中,一个字段有可能是 multi-fields(多字段)类型,这意味着同一份数据可以被索引为不同类型的字段。常见的情况就是,一个字段既被索引为 text 类型用于全文搜索,又被索引为 keyword 类型用于精确值搜索、排序和聚合。

当你在一个字段名后面加上 .keyword(例如 field.keyword),这说明你是在引用这个字段的 keyword 子字段。这个 keyword 子字段在索引时并不会被分词器拆分成单独的词条,而是作为一个完整的字符串被存储。这样,你就可以对这个字段进行精确值匹配、排序或者聚合操作。

举例来说,如果你有一个 message 字段并且想要对其进行聚合,你应该使用 message.keyword 而非 message。因为如果你直接对 message 进行聚合,Elasticsearch 就会尝试对每一个独立的词条进行聚合,而不是对整个字段值进行聚合。

如果你的字段没有 .keyword 子字段,那可能是在定义 mapping 时没有包含这一部分,或者这个字段的类型本身就是 keyword

聚合分类

  • 分桶聚合(Bucket agregations):类比SQL中的group by的作用,主要用于统计不同类型数据的数量。
  • 指标聚合(Metrics agregations):主要用于最大值、最小值、平均值、字段之和等指标的统计。
  • 管道聚合(Pipeline agregations):用于对聚合的结果进行二次聚合,如要统计绑定数量最多的标签bucket,就是要先按照标签进行分桶,再在分桶的结果上计算最大值。

分桶聚合

分桶(Bucket)聚合是一种特殊类型的聚合,它将输入文档集合中的文档分配到一个或多个桶中,每个桶都对应于一个键(key)。

下面是一些常用的分桶聚合类型:

  • terms:基于文档中某个字段的值,将文档分组到各个桶中。
  • date_histogram:基于日期字段,将文档按照指定的时间间隔分组到各个桶中。
  • histogram:基于数值字段,将文档按照指定的数值范围分组到各个桶中。
  • range:根据设置的范围,将数据分为不同的桶。

以下是一个使用 terms 分桶聚合的例子:

假设你有一个包含博客文章的 blog 索引,你想知道每个作者写了多少篇文章,可以使用以下查询:

GET /blog/_search
{
  "size": 0,
  "aggs": {
    "authors": {
      "terms": { "field": "author.keyword" }
    }
  }
}

在这个查询中:

  • size: 0 表示我们只对聚合结果感兴趣,不需要返回任何具体的搜索结果。
  • "aggs" (或者 "aggregations") 块定义了我们的聚合。
  • "authors" 是我们自己为这个聚合命名的标签,你可以用任何你喜欢的标签名。
  • "terms": { "field": "author.keyword" } 定义了我们要进行聚合的方式和字段。这里,我们告诉 Elasticsearch 使用 terms 聚合,并且使用 author.keyword 字段的值作为分桶的依据。

Elasticsearch 将返回一个包含每个作者以及他们所写的文章数量的列表。注意,由于 Elasticsearch 默认只返回前十个桶,如果你的数据中有更多的作者,可能需要设置 size 参数来获取更多的结果。

Histogram 聚合

histogram 是一个类型的桶聚合,它可以按照指定的间隔将数字字段的值划分为一系列桶。每个桶代表了这个区间内的所有文档。

以下是一个例子,我们根据价格字段创建一个间隔为 50 的直方图:

GET /products/_search
{
  "size": 0,
  "aggs" : {
    "prices" : {
      "histogram" : {
        "field" : "price",
        "interval" : 50
      }
    }
  }
}

在这个例子中,“prices” 是一个 histogram 聚合,它以 50 为间隔将产品的价格划分为一系列的桶。

指标聚合

在 Elasticsearch 中,指标聚合是对数据进行统计计算的一种方式,例如求和、平均值、最小值、最大值等。以下是一些常用的指标聚合类型:

  • avg:计算字段的平均值。
  • sum:计算字段的总和。
  • min:查找字段的最小值。
  • max:查找字段的最大值。
  • count:计算匹配文档的数量。
  • stats:提供了 count、sum、min、max 和 avg 的基本统计。

下面是一个示例,假设我们有一个包含售卖商品的 “sales” 索引,我们想要知道所有销售记录中的平均价格,可以使用 avg 聚合如下操作:

GET /sales/_search
{
  "size": 0,
  "aggs": {
    "average_price": {
      "avg": { "field": "price" }
    }
  }
}

在这个查询中:

  • "size": 0 表示我们只对聚合结果感兴趣,不需要返回任何具体的搜索结果。
  • "aggs" (或者 "aggregations") 块定义了我们的聚合。
  • "average_price" 是我们自己为这个聚合命名的标签,可以用任何你喜欢的标签名。
  • "avg": { "field": "price" } 定义了我们执行的聚合类型以及对哪个字段进行聚合。在这里,我们告诉 Elasticsearch 使用 avg 聚合,并且对 price 字段的值进行计算。Elasticsearch 将返回一个包含所有销售记录平均价格的结果。

Percentiles 聚合

percentiles 是指标聚合的一种,它用于计算数值字段的百分位数。给定一个列表百分比,Elasticsearch 可以计算每个百分比下的数值。

以下是一个例子,我们计算价格字段的 1st, 5th, 25th, 50th, 75th, 95th, and 99th 百分位数:

GET /products/_search
{
  "size": 0,
  "aggs" : {
    "price_percentiles" : {
      "percentiles" : {
        "field" : "price",
        "percents" : [1, 5, 25, 50, 75, 95, 99]
      }
    }
  }
}

在这个例子中,“price_percentiles” 是一个 percentiles 聚合,它计算了价格在各个百分位点的数值。

注意,对于大数据集,计算精确的百分位数可能需要消耗大量资源。因此,Elasticsearch 默认使用一个名为 TDigest 的算法来提供近似的计算结果,同时还能保持内存使用的可控性。

cardinality聚合

如果你想在 Elasticsearch 中进行去重操作,可以使用 terms 聚合加上 cardinality 聚合。这是一个示例,假设我们有一个包含user_id的 "users" 索引,并且我们想要知道有多少唯一的 user_id:

GET /users/_search
{
  "size": 0,
  "aggs": {
    "distinct_user_ids": {
      "cardinality": {
        "field": "user_id.keyword"
      }
    }
  }
}

在这个查询中:

  • "distinct_user_ids" 是我们自己为这个聚合命名的标签。
  • "cardinality": { "field": "user_id.keyword" } 使用了 cardinality 聚合,该聚合会返回指定字段(在这里是 user_id.keyword)的不同值的数量。

Elasticsearch 将返回一个结果,告诉我们有多少个不同的 user_id。请注意,cardinality 聚合可能并不总是完全精确,特别是对于大型数据集,因为它在内部使用了一种叫做 HyperLogLog 的算法来近似计算基数,这种算法会在保持内存消耗相对较小的情况下提供接近准确的结果。如果你需要完全精确的结果,可能需要考虑其他方法,例如使用脚本或者将数据导出到外部系统进行处理。

管道聚合

在 Elasticsearch 中,管道聚合(pipeline aggregations)是指这样一种聚合:它以其他聚合的结果作为输入,并进行进一步处理。常见的管道聚合包括:

  • avg_bucket
  • sum_bucket
  • min_bucket
  • max_bucket
  • stats_bucket
  • extended_stats_bucket
  • percentiles_bucket

这些都是 bucket 级别的管道聚合,它们会在一组数据桶上操作。

下面给出一个示例,假设我们有一个销售记录索引 "sales",每个销售记录都有售价 "price" 和销售日期 "date" 字段。如果我们想要计算每月平均销售价格,并找出所有月份中平均价格最高的月份,可以使用 date_histogram 聚合加上 avg 以及 max_bucket 聚合来实现:

GET /sales/_search
{
  "size": 0,
  "aggs": {
    "sales_per_month": {
      "date_histogram": {
        "field": "date",
        "calendar_interval": "month"
      },
      "aggs": {
        "avg_price": {
          "avg": { "field": "price" }
        }
      }
    },
    "max_avg_price": {
      "max_bucket": {
        "buckets_path": "sales_per_month>avg_price"
      }
    }
  }
}

在这个查询中:

  • "sales_per_month" 是一个按月聚合销售记录的 date_histogram 聚合。
  • "avg_price" 是一个嵌套在 "sales_per_month" 下的 avg 聚合,用于计算每月的平均销售价格。
  • "max_avg_price" 是一个 max_bucket 聚合,它会找出 "sales_per_month" 中所有子桶的 "avg_price" 最大值。

注意到 "max_avg_price" 中的 "buckets_path": "sales_per_month>avg_price"buckets_path 参数指定了此管道聚合的输入来源,> 符号表示路径层次,即先取 "sales_per_month" 聚合的结果,再取其中的 "avg_price" 聚合的结果作为输入。

返回的结果中会包含每个月的平均销售价格,以及所有月份中平均销售价格的最大值。

嵌套聚合

嵌套聚合就是在聚合内使用聚合,在 Elasticsearch 中,嵌套聚合通常用于处理 nested 类型的字段。nested 类型允许你将一个文档中的一组对象作为独立的文档进行索引和查询,这对于拥有复杂数据结构(例如数组或列表中的对象)的场景非常有用。

假设我们有一个 users 索引,每个 user 文档都有一个 purchases 字段,该字段是一个列出用户所有购买记录的数组,每个购买记录包含 product_idprice。如果我们想要找出价格超过 100 的所有产品的 ID,可以使用 nested 聚合:

GET /users/_search
{
  "size": 0,
  "aggs": {
    "all_purchases": {
      "nested": {
        "path": "purchases"
      },
      "aggs": {
        "expensive_purchases": {
          "filter": { "range": { "purchases.price": { "gt": 100 } } },
          "aggs": {
            "product_ids": { "terms": { "field": "purchases.product_id" } }
          }
        }
      }
    }
  }
}

在这个查询中:

  • "all_purchases" 是一个 nested 聚合,指定了 nested 对象的路径 purchases
  • "expensive_purchases" 是一个嵌套在 "all_purchases" 下的 filter 聚合,它会过滤出 price 大于 100 的购买记录。
  • "product_ids" 是一个嵌套在 "expensive_purchases" 下的 terms 聚合,它会提取出所有满足条件的 product_id

返回的结果将包含所有 price 大于 100 的产品的 ID 列表。

请注意,在处理 nested 数据时,你需要确保 mapping 中相应的字段已经被设置为 nested 类型,否则该查询可能无法按预期工作。

基于查询结果和聚合 & 基于聚合结果的查询

基于查询结果的聚合:在这种情况下,我们首先执行一个查询,然后对查询结果进行聚合。例如,如果我们要查询所有包含某关键字的文档,并计算它们的平均价格,可以这样做:

GET /products/_search
{
  "query": {
    "match": {
      "description": "laptop"
    }
  },
  "aggs": {
    "average_price": {
      "avg": {
        "field": "price"
      }
    }
  }
}

在上述例子中,我们首先通过 match 查询找到描述中包含 "laptop" 的所有产品,然后对这些产品的价格进行平均值聚合。

基于聚合结果的查询(Post-Filter):这种情况下,我们先执行聚合,然后基于聚合的结果执行过滤操作。这通常用于在聚合结果中应用一些额外的过滤条件。例如,如果我们想对所有产品进行销售数量聚合,然后从结果中过滤出销售数量大于10的产品,可以这样做:

GET /sales/_search
{
  "size": 0,
  "aggs": {
    "sales_per_product": {
      "terms": {
        "field": "product_id"
      }
    }
  },
  "post_filter": {
    "bucket_selector": {
      "buckets_path": {
        "salesCount": "sales_per_product._count"
      },
      "script": {
        "source": "params.salesCount > 10"
      }
    }
  }
}

在上述例子中,我们首先执行了一个 terms 聚合,按产品ID汇总销售记录。然后我们使用 bucket_selector post-filter 进一步筛选出销售数量大于10的桶(每个桶对应一个产品)。

聚合排序

_count

在 Elasticsearch 中,聚合排序允许你基于某一聚合的结果来对桶进行排序。例如,你可能希望查看销售量最高的10个产品,可以使用 terms 聚合以及其 sizeorder 参数来实现:

GET /sales/_search
{
  "size": 0,
  "aggs": {
    "top_products": {
      "terms": {
        "field": "product_id",
        "size": 10,
        "order": { "_count": "desc" }
      }
    }
  }
}

在这个例子中,top_products 是一个 terms 聚合,用于按 product_id 对销售记录进行分组。

  • "size": 10 的意思是只返回销售量最高的前10个产品(即只返回前10个桶)。
  • "order": { "_count": "desc" } 表示按桶中文档的数量(也就是销售量)降序排序。_count 是一个内置的排序键,代表桶中文档的数量。

返回的结果将包含销售量最高的前10个产品的 ID 列表。

需要注意的是,由于 Elasticsearch 默认会对桶进行优化,所以在使用 size 参数时可能无法得到完全准确的结果。如果需要更精确的结果,可以在请求中设置 "size": 0 ,然后使用 composite 聚合来分页获取所有结果。

_term

_term 在 Elasticsearch 的聚合排序中用来指定按照词条(即桶的键)来排序。

GET /sales/_search
{
  "size": 0,
  "aggs": {
    "products": {
      "terms": {
        "field": "product_id",
        "order": { "_term": "asc" }
      }
    }
  }
}

在这个例子中,通过 "order": { "_term": "asc" } 指定了按照 product_id 的值升序排序这些桶。

返回的结果将包含按照 product_id 升序排列的产品 ID 列表,每个产品 ID 对应一个桶,并且每个桶内包含对应产品的销售记录。

需要注意的是,在新版本的 Elasticsearch 中(7.0 以后),_term 已经被 key 替代用于排序。

GET /sales/_search
{
  "size": 0,
  "aggs" : {
    "products" : {
      "terms" : {
        "field" : "product_id",
        "order" : { "_key" : "asc" }
      }
    }
  }
}


本篇文章就到这里,感谢阅读,如果本篇博客有任何错误和建议,欢迎给我留言指正。文章持续更新

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
23天前
|
存储 SQL 监控
|
2月前
|
存储 JSON 监控
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
52 4
|
2月前
|
自然语言处理 搜索推荐 Java
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(一)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图
52 0
|
2月前
|
存储 自然语言处理 搜索推荐
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
35 0
|
3月前
|
存储 自然语言处理 关系型数据库
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步
聚合、补全、RabbitMQ消息同步、集群、脑裂问题、集群分布式存储、黑马旅游实现过滤和搜索补全功能
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步
|
3月前
|
JSON 自然语言处理 算法
ElasticSearch基础2——DSL查询文档,黑马旅游项目查询功能
DSL查询文档、RestClient查询文档、全文检索查询、精准查询、复合查询、地理坐标查询、分页、排序、高亮、黑马旅游案例
ElasticSearch基础2——DSL查询文档,黑马旅游项目查询功能
|
4月前
|
自然语言处理 Java 关系型数据库
ElasticSearch 实现分词全文检索 - 聚合查询 cardinality
ElasticSearch 实现分词全文检索 - 聚合查询 cardinality
137 1
|
4月前
|
存储 自然语言处理 Java
ElasticSearch 实现分词全文检索 - 经纬度定位商家距离查询
ElasticSearch 实现分词全文检索 - 经纬度定位商家距离查询
42 0
|
4月前
|
自然语言处理 Java
ElasticSearch 实现分词全文检索 - 高亮查询
ElasticSearch 实现分词全文检索 - 高亮查询
70 0
|
4月前
|
缓存 自然语言处理 Java
ElasticSearch 实现分词全文检索 - filter查询
ElasticSearch 实现分词全文检索 - filter查询
46 0