SolidUI社区-提示词链式思考(CoT)

简介: SolidUI社区-提示词链式思考(CoT)

背景

随着文本生成图像的语言模型兴起,SolidUI想帮人们快速构建可视化工具,可视化内容包括2D,3D,3D场景,从而快速构三维数据演示场景。SolidUI 是一个创新的项目,旨在将自然语言处理(NLP)与计算机图形学相结合,实现文生图功能。通过构建自研的文生图语言模型,SolidUI 利用 RLHF (Reinforcement Learning Human Feedback) 流程实现从文本描述到图形生成的过程。

项目地址: https://github.com/CloudOrc/SolidUI

项目镜像地址: https://gitee.com/CloudOrc/SolidUI

社区官网: [https: //website.solidui.top]
官网项目地址:https://github.com/CloudOrc/SolidUI-Website

链式思考(CoT)

链式思考(CoT)提示是一种强大的提示技术,可以帮助语言模型进行复杂的推理。它由Wei等人在2022年首次提出,主要思想是通过提供中间推理步骤来实现复杂任务的零样本学习。

image.png

https://arxiv.org/abs/2201.11903

工作原理

CoT提示的工作原理是,在提示中添加语言模型需要遵循的显式推理链。例如,在判断一组数中的奇数相加是否为偶数这个任务中,提示会要求语言模型先将所有的奇数相加,然后判断总和是否为偶数。通过这种方式,可以引导语言模型逐步推理,而不是一步到位给出结论。

与传统的少样本学习相比,CoT提示可以以更少的示例完成学习。有时仅需一个示例搭配CoT提示,语言模型就能完成复杂的推理任务。这是因为提示本身已经提供了足够的上下文和指导,让语言模型明确应该如何思考。

CoT提示的一个变种是零样本CoT提示。它会在原始提示中添加“让我们逐步思考”的指示,引导语言模型自发地进行逐步推理。虽然结果并不总是完美,但在示例不充足的情况下,这种提示也展现出强大的几乎零样本学习能力。

提示词示例

## 输入提示词
我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?
让我们逐步思考。

## 回答
首先,您从10个苹果开始。
您给了邻居和修理工各2个苹果,所以您还剩下10 - 2 - 2 = 6个苹果。
然后您买了5个苹果,所以现在您有6 + 5 = 11个苹果。
最后,您吃了1个苹果,所以您还剩下11 - 1 = 10个苹果。
所以您还剩下10个苹果。

结语

链式思考提示为语言模型注入了人类的推理过程,是目前实现复杂推理任务的最佳提示技术之一。它塑造了语言模型进行多步推理的能力,使其超越简单的模式匹配,向着真正的理解迈进。随着该技术的发展,我们期待语言模型的推理能力不断提升,最终达到甚至超过人类水平。

如果成为贡献者

  • 官方文档贡献。发现文档的不足、优化文档,持续更新文档等方式参与社区贡献。通过文档贡献,让开发者熟悉如何提交PR和真正参与到社区的建设。参考攻略:https://github.com/CloudOrc/SolidUI/discussions/54
  • 代码贡献。我们梳理了社区中简单并且容易入门的的任务,非常适合新人做代码贡献。请查阅新手任务列表:https://github.com/CloudOrc/SolidUI/issues/12
  • 内容贡献:发布SolidUI开源组件相关的内容,包括但不限于安装部署教程、使用经验、案例实践等,形式不限,请投稿给小助手。例如:https://github.com/CloudOrc/SolidUI/issues/10
  • 社区答疑:积极在社区中进行答疑、分享技术、帮助开发者解决问题等;

其他:积极参与社区活动、成为社区志愿者、帮助社区宣传、为社区发展提供有效建议等;

目录
相关文章
|
存储 自然语言处理 API
【网安AIGC专题11.1】12 CODEIE用于NER和RE:顶刊OpenAI API调用、CodeX比chatgpt更好:提示工程设计+控制变量对比实验(格式一致性、模型忠实度、细粒度性能)(下)
【网安AIGC专题11.1】12 CODEIE用于NER和RE:顶刊OpenAI API调用、CodeX比chatgpt更好:提示工程设计+控制变量对比实验(格式一致性、模型忠实度、细粒度性能)
124 0
|
机器学习/深度学习 存储 JSON
chatgpt说它有上千亿的参数,是什么意思?
chatgpt说它有上千亿的参数,是什么意思?
1478 0
|
5月前
|
算法
两个小模型互相验证,直接比肩大模型?微软的rStar甚至没用CoT和微调
【9月更文挑战第10天】微软研究院亚洲院与哈佛大学研究团队提出了rStar,一种创新的方法,旨在提升小型语言模型(SLMs)的推理能力。rStar采用自我对弈的相互生成-判别过程,利用增强版蒙特卡洛树搜索(MCTS)算法生成高质量推理轨迹,并由另一个相似能力的SLM验证这些轨迹的一致性。这种方法在多个模型与任务中显著提升了推理准确率,如在GSM8K上,LLaMA2-7B的准确率从12.51%跃升至63.91%。rStar的独特之处在于无需微调或依赖更强大的模型即可提升推理能力。然而,其计算成本和对SLM自身能力的依赖仍是挑战。
201 7
|
3月前
|
人工智能 自然语言处理 测试技术
苹果一篇论文得罪大模型圈?Transformer不会推理,只是高级模式匹配器!所有LLM都判死刑
苹果公司发布论文《GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models》,质疑大型语言模型(LLM)在数学推理方面的能力。尽管LLM在GSM8K等测试中表现良好,但在新基准测试GSM-Symbolic中,其准确率随数值变化而显著下降,表明LLM可能依赖于记忆和模式匹配而非真正的数学理解。这一发现引发了AI领域的广泛讨论。
52 5
|
4月前
|
人工智能 前端开发
大模型体验体验报告:OpenAI-O1内置思维链和多个llm组合出的COT有啥区别?传统道家理论+中学生物理奥赛题测试,名不虚传还是名副其实?
一个月前,o1发布时,虽然让人提前体验,但自己并未进行测试。近期终于有机会使用,却仍忘记第一时间测试。本文通过两个测试案例展示了o1的强大能力:一是关于丹田及练气的详细解答,二是解决一道复杂的中学生物理奥赛题。o1的知识面广泛、推理迅速,令人印象深刻。未来,或许可以通过赋予o1更多能力,使其在更多领域发挥作用。如果你有好的测试题,欢迎留言,一起探索o1的潜力。
176 1
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
【Prompt Engineering提示工程技术:思维树 (ToT)、检索增强生成 (RAG)、自动推理并使用工具 (ART)】
思维树(ToT)框架,旨在解决复杂任务,通过构建一棵思维树,利用语言模型生成并评估中间步骤,结合搜索算法(如广度优先搜索)进行系统探索。ToT在不同任务中需定义思维步骤及候选数量,如“算24游戏”需三分步骤,每步评估可行性。实验表明,ToT显著优于其他提示方法。此外,ToT框架可结合强化学习不断进化,提升解决复杂问题的能力。
210 1
【Prompt Engineering提示工程技术:思维树 (ToT)、检索增强生成 (RAG)、自动推理并使用工具 (ART)】
|
6月前
|
存储 并行计算
小技巧大功效,仅阅读两次提示让循环语言模型超越Transformer++
【8月更文挑战第27天】斯坦福与布法罗大学的研究显示,通过"Just-Read-Twice"(JRT)策略,循环语言模型(RNNs)在多项任务上的表现超越了行业标杆Transformer++模型。JRT策略让RNNs在处理信息时进行两次读取,有效解决长上下文记忆难题,显著提升了性能。实验覆盖FDA、SQUAD等多个任务,均取得明显成效。论文已发布于arXiv。
35 2
|
6月前
|
机器学习/深度学习 人工智能 算法
ChatGPT 等相关大模型问题之ChatGPT 的概念如何解决
ChatGPT 等相关大模型问题之ChatGPT 的概念如何解决
|
6月前
|
知识图谱
模型遇见知识图谱问题之ARTIST模型知识融入模型中的问题如何解决
模型遇见知识图谱问题之ARTIST模型知识融入模型中的问题如何解决
|
7月前
|
人工智能
AI软件开发大模型,最简单的相关构思,有提问的输入框,有返回答案的答案框
AI软件开发大模型,最简单的相关构思,有提问的输入框,有返回答案的答案框