基于FFT傅里叶变换的64QAM基带信号频偏估计和补偿算法FPGA实现,包含testbench和matlab星座图显示

简介: 基于FFT傅里叶变换的64QAM基带信号频偏估计和补偿算法FPGA实现,包含testbench和matlab星座图显示

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,并使用matlab2022a对结果进行星座图的显示:

008ce9579b5c112f5afbcb02b5bb8047_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b8e54b0c4ba5e462353fee942b714d4f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

将FPGA的频偏基带QPSK信号和频偏补偿后的QPSK基带信号使用matlab显示星座图,结果如下:

3b989902b7a1b5197d289e647fe1d7b6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
FFT傅里叶变换是一种高效的频谱分析方法,可以将时域信号转换为频域信号,用于频偏估计。FFT傅里叶变换是一种将时域信号转换为频域信号的方法,可以将信号的频谱信息展现出来。对于基带信号,通过FFT可以分析信号的频谱分布,从中获得频偏的估计。FFT傅里叶变换的数学原理如下:

   假设输入的时域信号为 x(n),通过FFT傅里叶变换将其转换为频域信号 X(k):

9457eb69f1e62ea32cc37734b2f42058_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    频偏估计和补偿的目标是通过接收到的信号来估计频偏,并在接收端对接收信号进行频偏补偿,使其与发送信号的频率完全一致。基于FFT傅里叶变换的频偏估计和补偿算法的数学原理如下(其实现原理和QPSK类似):  

d649f65d45e4e0bcba0c2b70cccc2f4f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    综上所述,基于FFT傅里叶变换的QPSK基带信号频偏估计和补偿算法的实现过程主要包括64QAM调制、信号传输、接收、FFT傅里叶变换、频偏估计和频偏补偿等步骤。  

3.Verilog核心程序
````timescale 1ns / 1ns

module TEST;

reg clk;
reg i_clkSYM;
reg rst;
reg start;

wire  [5:0] parallel_data;
wire [15:0]sin;
wire [15:0]cos;
wire signed[19:0]  I_com;
wire signed[19:0]  Q_com;
wire signed[15:0]o_Ifir_T;
wire signed[15:0]o_Qfir_T;


// DUT
tops_64QAM_mod  top(
   .clk(clk),
   .rst(rst),
   .start(start),
   .parallel_data(parallel_data),
   .sin(sin),
   .cos(cos),
   .I_com(I_com),
   .Q_com(Q_com),
   .I_comcos(o_Ifir_T),
   .Q_comsin(o_Qfir_T)
   );

wire [15:0]o_freq;
wire signed[15:0]o_cos;
wire signed[15:0]o_sin;
wire signed[15:0]o_Ifir;
wire signed[15:0]o_Qfir;
wire o_ends;
wire o_start;
wire o_enable;
wire signed[31:0]absy;
//64相位估计和补偿
tops_64QAM_Fre_est tops_16QAMU(
.i_clk (clk),
.i_rst (~rst),
.i_clkSYM(i_clkSYM),
.i_I(o_Ifir_T),
.i_Q(o_Qfir_T),
.o_ends(o_ends),
.o_start(o_start),
.o_enable(o_enable),
.absy (absy),
.o_freq(o_freq),
.o_cos (o_cos),
.o_sin (o_sin),
.o_Ifir (o_Ifir),
.o_Qfir (o_Qfir)
);

initial begin
    clk = 0;
    rst = 0;
    start = 1;
    #10;
    rst = 1;
end

always #5
clk <= ~clk;

reg writeen;
initial
begin
writeen = 1'b0;

i_clkSYM=1'b1;


#100
writeen = 1'b1;

end

always #80 i_clkSYM=~i_clkSYM;
initial
begin

#14400000

$stop();

end
//显示发射端带相位旋转的星座图
integer fout1;
integer fout2;
initial begin
fout1 = $fopen("It.txt","w");
fout2 = $fopen("Qt.txt","w");
end
always @ (posedge clk)
begin
if(writeen==1)
begin
$fwrite(fout1,"%d\n",o_Ifir_T);
$fwrite(fout2,"%d\n",o_Qfir_T);
end
end
//显示接收端相位估计和补偿之后的星座图
integer fout3;
integer fout4;
initial begin
fout3 = $fopen("Ir.txt","w");
fout4 = $fopen("Qr.txt","w");
end
always @ (posedge clk)
begin
if(writeen==1)
begin
$fwrite(fout3,"%d\n",o_Ifir);
$fwrite(fout4,"%d\n",o_Qfir);
end
end

endmodule
```

相关文章
|
9天前
|
算法 数据安全/隐私保护
星座图整形技术在光纤通信中的matlab性能仿真,分别对比标准QAM,概率整形QAM以及几何整形QAM
本文介绍了现代光纤通信系统中的星座图整形技术,包括标准QAM、概率整形QAM和几何整形QAM三种方法,并对比了它们的原理及优缺点。MATLAB 2022a仿真结果显示了不同技术的效果。标准QAM实现简单但效率有限;概率整形QAM通过非均匀符号分布提高传输效率;几何整形QAM优化星座点布局,增强抗干扰能力。附带的核心程序代码展示了GMI计算过程。
20 0
|
2月前
|
Windows
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
本文通过MATLAB仿真实现了OFDM系统中BPSK、QPSK、4QAM、16QAM和32QAM调制解调过程,并在加性高斯白噪声信道及TDL瑞利衰落信道下计算了不同信噪比条件下的误比特率。
76 4
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
|
2月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
45 0
|
4月前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
4月前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
76 8
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
4月前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
51 0
|
5月前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的32QAM解调算法matlab性能仿真
```markdown - 32QAM解调算法运用BP神经网络在matlab2022a中实现,适应复杂通信环境。 - 网络结构含输入、隐藏和输出层,利用梯度下降法优化,以交叉熵损失最小化为目标训练。 - 训练后,解调通过前向传播完成,提高在噪声和干扰中的数据恢复能力。 ``` 请注意,由于字符限制,部分详细信息(如具体图示和详细步骤)未能在摘要中包含。
|
5月前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的16QAM解调算法matlab性能仿真
这是一个关于使用MATLAB2022a实现的16QAM解调算法的摘要。该算法基于BP神经网络,利用其非线性映射和学习能力从复数信号中估计16QAM符号,具有良好的抗噪性能。算法包括训练和测试两个阶段,通过反向传播调整网络参数以减小输出误差。核心程序涉及数据加载、可视化以及神经网络训练,评估指标为误码率(BER)和符号错误率(SER)。代码中还包含了星座图的绘制和训练曲线的展示。
|
5月前
|
机器学习/深度学习 算法
m基于深度学习的QPSK调制解调系统频偏估计和补偿算法matlab仿真
MATLAB 2022a中展示了基于深度学习的QPSK调制解调系统频偏估计和补偿算法仿真结果。该算法运用神经网络模型实时估计并补偿无线通信中的频率偏移。QPSK调制将二进制信息映射到四个相位状态,解调通常采用相干解调。深度学习算法通过预处理、网络结构设计、损失函数选择和优化算法实现频偏估计。核心程序生成不同SNR下的信号,比较了有无频偏补偿的误码率,显示了补偿效果。
64 1

热门文章

最新文章