干货丨城市数据中心热面临的虚火与软肋

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

当前,“互联网+”的社会运行模式正在深刻改变着人们的生产生活方式,数据中心作为一种新型基础设施,已成为支撑城市建设和经济运行的中枢系统。随着“网络强国”战略的全面实施和新型城镇化步伐的加快,城市数据中心的作用和战略价值将更加突出。为此,各省市积极抢抓新一代信息基础设施建设的重要机遇,加快城市级数据中心的建设布局,大力支撑新型智慧城市建设,且希望借机带动新兴产业的发展。与此同时,城市数据中心热也带来了重复建设、资金浪费、标准缺乏等一系列问题。国脉互联作为一流的信息化咨询机构,通过长达数年对城市数据中心的考察和监测,现对我国城市数据中心热面临的虚火和软肋进行分析,并提出相关策略建议,希望为我国城市数据中心可持续发展提供帮助。

一、城市数据中心“借势上位”

随着物联网、云计算、大数据、移动互联网等新一代信息技术的快速发展与广泛应用,信息基础设施成为了新的“高速公路”,信息资源成为了战略性资源,积极推动经济社会向数字化、智能化、智慧化转型升级。城市数据中心作为数据采集、传输、存储、加工的核心,也直接决定着城市各个应用系统的正常运行。为此,城市数据中心规划建设受到了社会各界的广泛关注,针对数据中心建设运行的先进性、安全性、规范性、效益性研究也全面展开。

近几年,我国制定出台了“宽带中国”、“互联网+”、“信息消费”、“信息惠民”以及大数据、云计算等一系列政策文件,极大刺激了对数据中心的需求,尤其是各省市新型智慧城市的建设,更是把城市数据中心的地位提升到了一个新的高度。同时,2013年工信部等五部委发布《关于数据中心建设布局的指导意见》,2015年国务院又发布《关于促进云计算创新发展培育信息产业新业态的意见》,进一步为我国城市数据中心的规范化建设发展提供了支撑。

二、城市数据中心“规模激增”

随着我国互联网、云计算和大数据产业的快速发展,数据中心产业也进入了大规模规划建设与发展阶段。各省市根据国家相关政策文件,加快制定实施新兴产业发展与数据中心建设规划,各地方政府大力加强招商引资力度,积极推动城市级云数据中心建设,同时三大运营商、大型互联网企业、信息通信设备制造商以及国际IT巨头等纷纷投入到各种模式的数据中心建设浪潮之中,以抢占数据中心的巨大市场份额,这也推动了各种数据中心雨后春笋般的急剧发展。

目前,三大运营商在我国295个地级以上城市数据中心建设覆盖率达到了90%以上,近1/3的大型数据中心有集中在北上广等发达城市,其中中国移动在各地的数据中心密集开工,到2016数据中心全网机柜突破10万架,中国联通将在全国规划建设十大云数据中心,总机架数将超过25万架。据统计,目前我国每年新增数据中心投资规模大约在1000亿元人民币左右,主要包含服务器、网络设备、信息安全设备以及基础设施产品等,预计到达2020年,我国数据中心保有量将超过8万个,总面积将超过3000万平米。

三、城市数据中心“问题突出”

随着我国对城市数据中心的重视以及相关企业的积极参与,城市数据中心建设规模快速扩大,对我国信息化的快速发展与信息经济的融合创新起到了重要支撑作用。与此同时,城市数据中心也出现了盲目建设的现象,不仅虚火上升,且软肋明显,严重造成了城市数据中心的重复建设与社会资源浪费。

第一,城市数据中心市场虚火较大。由于各省市信息化建设步伐的加快,以及培育云计算、大数据等新兴产业的经济发展需求,就造成了各地市不断加大招商引智规模,大力加强以云计算技术为核心的城市数据中心,几乎每个城市至少有2个数据中心,多的达到5个以上,数据中心热带来了非常明显的虚火。事实上,城市数据中心应该发挥云计算技术的优势,有效整合现有数据中心的服务器资源,提高资源利用率。但现实情况确是反其道而行之,不断规划建设大量的云计算中心,存在很大的盲目性,造成数据中心严重过剩。2013年1月,工信部等五部委联合发布的《关于数据中心建设布局的一些指导的意见》要求在同一城市不宜集中建设过多的超大型数据中心,要求各地政府要因地适宜、有序推进数据中心建设,但约束作用有限。

第二,城市数据中心建设带来巨大资源损耗。数据中心建设不仅带来服务器、网络设备及相关基础设施的损耗,长期运营也将带来巨大的电力损耗。为此,2015年3月,工业和信息化部、国家机关事务管理局、国家能源局联合印发《关于国家绿色数据中心试点工作方案》,提出到2017年,围绕重点领域创建百个绿色数据中心试点,试点数据中心能效平均提高8%以上。事实上,目前数据中心的能源消耗是非常大的,据统计,规模为100个机架的数据中心来说,加上数据中心的空调、新风、照明、其他电力能耗,每年电力耗能将达到100万度以上。据预测,到2020年我国数据中心能耗将达到1000亿度,这将带来巨大的能源消耗压力。

第三,城市数据中心资源没有充分发挥价值。由于数据中心建设规模的迅速扩大及低水平运营,造成了城市数据中心资源的浪费,没有真正发挥其作用,这也成为了我国数据中心普遍存在的软肋。一方面,数据中心产能过剩造成投产率低,根据工信部2014年公布的数据,超大型数据中心的投产率1.8%,大型数据中心投产率21.5%,中小型数据中心投产率40%,到2016年数据中心的平均投产率约为50%左右。另一方面,由于地理位置以及经济发展水平的差异,造成了各数据中心业务量的严重不均衡,缺乏真正大数据的安全存储与开发应用,进一步造成了大量数据中心资源的闲置。

第四,城市数据中心普遍存在缺乏数据的现象。城市数据中心运行服务的基础是数据,但缺乏数据应用的数据中心比比皆是。由于长期以来我国缺乏数据资源管理和应用的基础,制度缺乏、数据缺失现象比较严重,这就造成了数据采集、比对、共享、开放的难度超出了想象,打破“信息孤岛”举步维艰。所以,在推进新型智慧城市建设过程中,各地并没有考虑到实际情况,基本上第一步都是先建城市数据中心,但数据资源梳理入库和整合共享无法按计划推进,城市数据中心的数据资源量十分有限,不仅无法实施有效的交换共享,大数据的决策支持更是奢望。

第五,城市数据中心缺少标准化的数据管理系统。近年来,随着政府数据资源整合共享力度的不断加大,城市数据中心的功能也在快速升级,在负责电子政务网络与各部门应用系统存储基础上,加快推动政府数据资源的整合与开发利用。由于缺乏统一的标准规范及数据中心基础管理系统,各城市数据中心基本上都是根据各个IT公司的解决方案搭建数据管理与应用系统,模式多样、功能不一、架构自定,不仅造成了新的区域孤岛,且带来了公共信息资源管理的混乱,使数据资源的价值大打折扣。这已成为我国城市数据中心建设存在的最大软肋,直接影响各地市信息化发展水平,极大制约新型智慧城市建设及“互联网+政务服务”的实施。

四、城市数据中心“亟需规范”

针对我国城市数据中心建设运营方面存在的虚火和软肋,通过对城市数据中心存在的一系列问题剖析,现提出如下策略建议:

第一,合理布局。根据我国城市数据中心建设现状及未来趋势,进一步修改完善国家关于数据中心建设布局方面的政策文件,按照交通区位、环境资源、业务需求等指标进行合理布局,充分发挥区域城市数据中心的作用。

第二,总量控制。加强对国家、省、市、县各级政府以及企业对城市数据中心需求量的科学评估,实施城市数据中心与存储设备的总量控制,逐渐淘汰多余的数据中心,避免造成重复建设与资源浪费。

第三,区域共享。加强对“互联网+政府服务”模式以及各级政府数据中心价值的研究,科学制定城市数据中心的建设运营模式,不允许地级以下城市建设数据中心,统一共享区域地级市城市数据中心存储资源,加强统一协调,实现资源共享,减少重复建设。

第四,市场导向。利用市场的手段加强对城市数据中心市场的调控,根据城市数据中心的不同建设规模与PUE值进行梯度优惠,包括土地、电力、税收等手段,加强绿色数据中心建设,提高数据中心安全系数,使城市数据中心走上科学的发展道路。

第五,规范建设。加强城市数据中心管理与应用系统的标准化建设,积极推广应用数据基因DNA系统,即政务大数据智能管理系统,严格数据资源梳理、数据清单制定、元数据标准化管理、数据资源目录管理以及信息资源库架构管理等流程,实现城市数据中心标准化建设,真正发挥城市数据中心的作用。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
存储 运维 大数据
小城市建设大数据中心,如何避免“晒太阳”?
落户“草原云谷”,挺进“世界屋脊”,伴随今年政府工作报告给“新基建”吹来新风,我国大数据中心产业近期迎来又一轮发展高潮。
|
5月前
|
存储 传感器 监控
探索现代数据中心的冷却技术革新
【4月更文挑战第23天】 在信息技术迅猛发展的今天,数据中心作为计算和存储的核心枢纽,其稳定性和效率至关重要。然而,随着处理能力的增强,设备发热量急剧上升,有效的冷却方案成为确保数据中心持续运行的关键因素。本文将深入分析当前数据中心面临的热管理挑战,并探讨几种前沿的冷却技术,包括液冷系统、热管技术和环境自适应控制策略。通过比较不同技术的优缺点,我们旨在为数据中心管理者提供实用的冷却解决方案参考。
|
2月前
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【7月更文挑战第36天】在数据中心管理和运营中,能源效率已成为关键性能指标之一。随着能源成本的不断上升以及环境保护意识的增强,开发智能化、自动化的解决方案以降低能耗和提高能源利用率变得尤为重要。本文探讨了如何应用机器学习技术对数据中心的能源消耗进行建模、预测和优化,提出了一个基于机器学习的框架来动态调整资源分配和工作负载管理,以达到节能的目的。通过实验验证,该框架能够有效减少数据中心的能耗,同时保持服务质量。
|
5月前
|
存储 大数据 数据处理
探索现代数据中心的冷却技术
【5月更文挑战第25天】 在信息技术迅猛发展的今天,数据中心作为其核心基础设施之一,承载了巨大的数据处理需求。随着服务器密度的增加和计算能力的提升,数据中心的能耗问题尤其是冷却系统的能效问题日益凸显。本文将深入探讨现代数据中心所采用的高效冷却技术,包括液冷解决方案、热管技术和环境自适应控制等,旨在为数据中心的绿色节能提供参考和启示。
下一篇
无影云桌面