Flink之窗口 (Window) 下篇1

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink之窗口 (Window) 下篇

窗口函数(Window Functions)

定义了窗口分配器,我们只是知道了数据属于哪个窗口,可以将数据收集起来了;至于收集起来到底要做什么,其实还完全没有头绪。所以在窗口分配器之后,必须再接上一个定义窗口如何进行计算的操作,这就是所谓的“窗口函数”(window functions)。


经窗口分配器处理之后,数据可以分配到对应的窗口中,而数据流经过转换得到的数据类型是 WindowedStream。这个类型并不是 DataStream,所以并不能直接进行其他转换,而必须进一步调用窗口函数,对收集到的数据进行处理计算之后,才能最终再次得到 DataStream。


eb9b0eb13fb44ab191051394ecc4018a.png窗口函数定义了要对窗口中收集的数据做的计算操作,根据处理的方式可以分为两类:增量聚合函数和全窗口函数。下面我们来进行分别讲解。

增量聚合函数(incremental aggregation functions)

窗口将数据收集起来,最基本的处理操作当然就是进行聚合。窗口对无限流的切分,可以看作得到了一个有界数据集。如果我们等到所有数据都收集齐,在窗口到了结束时间要输出结果的一瞬间再去进行聚合,显然就不够高效了——这相当于真的在用批处理的思路来做实时流处理。


为了提高实时性,我们可以再次将流处理的思路发扬光大:就像 DataStream 的简单聚合一样,每来一条数据就立即进行计算,中间只要保持一个简单的聚合状态就可以了;区别只是在于不立即输出结果,而是要等到窗口结束时间。等到窗口到了结束时间需要输出计算结果的时候,我们只需要拿出之前聚合的状态直接输出,这无疑就大大提高了程序运行的效率和实时性。


典型的增量聚合函数有两个:ReduceFunction 和 AggregateFunction。

归约函数(ReduceFunction)

最基本的聚合方式就是归约(reduce)。我们在基本转换的聚合算子中介绍过 reduce 的用法,窗口的归约聚合也非常类似,就是将窗口中收集到的数据两两进行归约。当我们进行流处理时,就是要保存一个状态;每来一个新的数据,就和之前的聚合状态做归约,这样就实现了增量式的聚合。


窗口函数中也提供了 ReduceFunction:只要基于 WindowedStream 调用.reduce()方法,然后传入 ReduceFunction 作为参数,就可以指定以归约两个元素的方式去对窗口中数据进行聚合了。这里的 ReduceFunction 其实与简单聚合时用到的 ReduceFunction 是同一个函数类接口,所以使用方式也是完全一样的。


我们回忆一下,ReduceFunction 中需要重写一个 reduce 方法,它的两个参数代表输入的两个元素,而归约最终输出结果的数据类型,与输入的数据类型必须保持一致。也就是说,中间聚合的状态和输出的结果,都和输入的数据类型是一样的。

public class ClickSource implements SourceFunction<Event> {
    // 声明一个布尔变量,作为控制数据生成的标识位
    private Boolean running = true;
    public void run(SourceContext<Event> sourceContext) throws Exception {
        Random random = new Random(); // 在指定的数据集中随机选取数据
        String[] users = {"Mary", "Alice", "Bob", "Cary"};
        String[] urls = {"./home", "./cart", "./fav", "./prod?id=1",
                "./prod?id=2"};
        while (running) {
            sourceContext.collect(new Event(
                    users[random.nextInt(users.length)],
                    urls[random.nextInt(urls.length)],
                    Calendar.getInstance().getTimeInMillis()
            ));
            // 隔 1 秒生成一个点击事件,方便观测
            Thread.sleep(1000);
        }
    }
    public void cancel() {
        running = false;
    }
}
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import java.time.Duration;
public class WindowReduceExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        // 从自定义数据源读取数据,并提取时间戳、生成水位线
        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ZERO)
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));
        stream.map(new MapFunction<Event, Tuple2<String, Long>>() {
                    @Override
                    public Tuple2<String, Long> map(Event value) throws Exception {
                        // 将数据转换成二元组,方便计算
                        return Tuple2.of(value.user, 1L);
                    }
                })
                .keyBy(r -> r.f0)
                // 设置滚动事件时间窗口
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .reduce(new ReduceFunction<Tuple2<String, Long>>() {
                    @Override
                    public Tuple2<String, Long> reduce(Tuple2<String, Long> value1,
                                                       Tuple2<String, Long> value2) throws Exception {
                        // 定义累加规则,窗口闭合时,向下游发送累加结果
                        return Tuple2.of(value1.f0, value1.f1 + value2.f1);
                    }
                })
                .print();
        env.execute();
    }
}

运行结果:每五秒钟输出一次

(Bob,1)
(Alice,2)
(Mary,2)
...

代码中我们对每个用户的行为数据进行了开窗统计。与 word count 逻辑类似,首先将数据转换成(user, count)的二元组形式(类型为 Tuple2<String, Long>),每条数据对应的初始 count值都是 1;然后按照用户 id 分组,在处理时间下开滚动窗口,统计每 5 秒内的用户行为数量。对于窗口的计算,我们用 ReduceFunction 对 count 值做了增量聚合:窗口中会将当前的总 count值保存成一个归约状态,每来一条数据,就会调用内部的 reduce 方法,将新数据中的 count值叠加到状态上,并得到新的状态保存起来。等到了 5 秒窗口的结束时间,就把归约好的状态直接输出。


这里需要注意,我们经过窗口聚合转换输出的数据,数据类型依然是二元组 Tuple2<String, Long>。


聚合函数(AggregateFunction)

ReduceFunction 可以解决大多数归约聚合的问题,但是这个接口有一个限制,就是聚合状态的类型、输出结果的类型都必须和输入数据类型一样。这就迫使我们必须在聚合前,先将数据转换(map)成预期结果类型;而在有些情况下,还需要对状态进行进一步处理才能得到输出结果,这时它们的类型可能不同,使用 ReduceFunction 就会非常麻烦。


例如,如果我们希望计算一组数据的平均值,应该怎样做聚合呢?很明显,这时我们需要计算两个状态量:数据的总和(sum),以及数据的个数(count),而最终输出结果是两者的商(sum/count)。如果用 ReduceFunction,那么我们应该先把数据转换成二元组(sum, count)的形式,然后进行归约聚合,最后再将元组的两个元素相除转换得到最后的平均值。本来应该只是一个任务,可我们却需要 map-reduce-map 三步操作,这显然不够高效。


于是自然可以想到,如果取消类型一致的限制,让输入数据、中间状态、输出结果三者类型都可以不同,不就可以一步直接搞定了吗?


Flink 的 Window API 中的 aggregate 就提供了这样的操作。直接基于 WindowedStream 调 用.aggregate()方法,就可以定义更加灵活的口聚合操作。这个方法需要传入一个AggregateFunction 的实现类作为参数。AggregateFunction 在源码中的定义如下

public interface AggregateFunction<IN, ACC, OUT> extends Function, Serializable {
  ACC createAccumulator();
  ACC add(IN value, ACC accumulator);
  OUT getResult(ACC accumulator);
  ACC merge(ACC a, ACC b);
}

AggregateFunction 可以看作是 ReduceFunction 的通用版本,这里有三种类型:输入类型(IN)、累加器类型(ACC)和输出类型(OUT)。输入类型 IN 就是输入流中元素的数据类型;累加器类型 ACC 则是我们进行聚合的中间状态类型;而输出类型当然就是最终计算结果的类型了。


接口中有四个方法:


createAccumulator():创建一个累加器,这就是为聚合创建了一个初始状态,每个聚合任务只会调用一次。

add():将输入的元素添加到累加器中。这就是基于聚合状态,对新来的数据进行进一步聚合的过程。方法传入两个参数:当前新到的数据 value,和当前的累加器accumulator;返回一个新的累加器值,也就是对聚合状态进行更新。每条数据到来之后都会调用这个方法。

getResult():从累加器中提取聚合的输出结果。也就是说,我们可以定义多个状态,然后再基于这些聚合的状态计算出一个结果进行输出。比如之前我们提到的计算平均值,就可以把 sum 和 count 作为状态放入累加器,而在调用这个方法时相除得到最终结果。这个方法只在窗口要输出结果时调用。

merge():合并两个累加器,并将合并后的状态作为一个累加器返回。这个方法只在需要合并窗口的场景下才会被调用;最常见的合并窗口(Merging Window)的场景就是会话窗口(Session Windows)。

所以可以看到,AggregateFunction 的工作原理是:首先调用 createAccumulator()为任务初始化一个状态(累加器);而后每来一个数据就调用一次 add()方法,对数据进行聚合,得到的结果保存在状态中;等到了窗口需要输出时,再调用 getResult()方法得到计算结果。很明显,与 ReduceFunction 相同,AggregateFunction 也是增量式的聚合;而由于输入、中间状态、输出的类型可以不同,使得应用更加灵活方便。


下面来看一个具体例子。我们知道,在电商网站中,PV(页面浏览量)和 UV(独立访客数)是非常重要的两个流量指标。一般来说,PV 统计的是所有的点击量;而对用户 id 进行去重之后,得到的就是 UV。所以有时我们会用 PV/UV 这个比值,来表示“人均重复访问量”,也就是平均每个用户会访问多少次页面,这在一定程度上代表了用户的粘度。

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import java.util.HashSet;
public class WindowAggregateFunctionExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));
        // 所有数据设置相同的 key,发送到同一个分区统计 PV 和 UV,再相除
        stream.keyBy(data -> true)
                .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(2)))
                .aggregate(new AvgPv())
                .print();
        env.execute();
    }
    public static class AvgPv implements AggregateFunction<Event, Tuple2<HashSet<String>, Long>, Double> {
        @Override
        public Tuple2<HashSet<String>, Long> createAccumulator() {
            // 创建累加器
            return Tuple2.of(new HashSet<String>(), 0L);
        }
        @Override
        public Tuple2<HashSet<String>, Long> add(Event value, Tuple2<HashSet<String>, Long> accumulator) {
            // 属于本窗口的数据来一条累加一次,并返回累加器
            accumulator.f0.add(value.user);
            return Tuple2.of(accumulator.f0, accumulator.f1 + 1L);
        }
        @Override
        public Double getResult(Tuple2<HashSet<String>, Long> accumulator) {
            // 窗口闭合时,增量聚合结束,将计算结果发送到下游
            return (double) accumulator.f1 / accumulator.f0.size();
        }
        @Override
        public Tuple2<HashSet<String>, Long> merge(Tuple2<HashSet<String>, Long> a, Tuple2<HashSet<String>, Long> b) {
            return null;
        }
    }
}

输出结果:

1.0
1.6666666666666667
...

代码中我们创建了事件时间滑动窗口,统计 10 秒钟的“人均 PV”,每 2 秒统计一次。由于聚合的状态还需要做处理计算,因此窗口聚合时使用了更加灵活的 AggregateFunction。为了统计 UV,我们用一个 HashSet 保存所有出现过的用户 id,实现自动去重;而 PV 的统计则类似一个计数器,每来一个数据加一就可以了。所以这里的状态,定义为包含一个 HashSet 和一个 count 值的二元组(Tuple2<HashSet, Long>),每来一条数据,就将 user 存入 HashSet,同时 count 加 1。这里的 count 就是 PV,而 HashSet 中元素的个数(size)就是 UV;所以最终窗口的输出结果,就是它们的比值。


这里没有涉及会话窗口,所以 merge()方法可以不做任何操作。


另外,Flink 也为窗口的聚合提供了一系列预定义的简单聚合方法,可以直接基于WindowedStream 调用。主要包括.sum()/max()/maxBy()/min()/minBy(),与 KeyedStream 的简单聚合非常相似。它们的底层,其实都是通过 AggregateFunction 来实现的。


通过 ReduceFunction 和 AggregateFunction 我们可以发现,增量聚合函数其实就是在用流处理的思路来处理有界数据集,核心是保持一个聚合状态,当数据到来时不停地更新状态。这就是 Flink 所谓的“有状态的流处理”,通过这种方式可以极大地提高程序运行的效率,所以

在实际应用中最为常见。

全窗口函数(full window functions)

窗口操作中的另一大类就是全窗口函数。与增量聚合函数不同,全窗口函数需要先收集窗口中的数据,并在内部缓存起来,等到窗口要输出结果的时候再取出数据进行计算。


很明显,这就是典型的批处理思路了——先攒数据,等一批都到齐了再正式启动处理流程。这样做毫无疑问是低效的:因为窗口全部的计算任务都积压在了要输出结果的那一瞬间,而在之前收集数据的漫长过程中却无所事事。这就好比平时不用功,到考试之前通宵抱佛脚,肯定不如把工夫花在日常积累上。


那为什么还需要有全窗口函数呢?这是因为有些场景下,我们要做的计算必须基于全部的数据才有效,这时做增量聚合就没什么意义了;另外,输出的结果有可能要包含上下文中的一些信息(比如窗口的起始时间),这是增量聚合函数做不到的。所以,我们还需要有更丰富的窗口计算方式,这就可以用全窗口函数来实现。


在 Flink 中,全窗口函数也有两种:WindowFunction 和 ProcessWindowFunction。

窗口函数(WindowFunction)

WindowFunction 字面上就是“窗口函数”,它其实是老版本的通用窗口函数接口。我们可以基于 WindowedStream 调用.apply()方法,传入一个 WindowFunction 的实现类。

stream
.keyBy(<key selector>)
.window(<window assigner>)
.apply(new MyWindowFunction());

这个类中可以获取到包含窗口所有数据的可迭代集合(Iterable),还可以拿到窗口(Window)本身的信息。WindowFunction 接口在源码中实现如下:

public interface WindowFunction<IN, OUT, KEY, W extends Window> extends Function, Serializable {
  void apply(KEY key, W window, Iterable<IN> input, Collector<OUT> out) throws Exception;
}

当窗口到达结束时间需要触发计算时,就会调用这里的 apply 方法。我们可以从 input 集合中取出窗口收集的数据,结合 key 和 window 信息,通过收集器(Collector)输出结果。这里 Collector 的用法,与 FlatMapFunction 中相同。


不过我们也看到了,WindowFunction 能提供的上下文信息较少,也没有更高级的功能。事实上,它的作用可以被 ProcessWindowFunction 全覆盖,所以之后可能会逐渐弃用。一般在实际应用,直接使用ProcessWindowFunction 就可以了。

处理窗口函数(ProcessWindowFunction)

ProcessWindowFunction 是 Window API 中最底层的通用窗口函数接口。之所以说它“最底层”,是因为除了可以拿到窗口中的所有数据之外,ProcessWindowFunction 还可以获取到一个“上下文对象”(Context)。这个上下文对象非常强大,不仅能够获取窗口信息,还可以访问当前的时间和状态信息。这里的时间就包括了处理时间(processing time)和事件时间水位线(eventtime watermark)。这就使得 ProcessWindowFunction 更加灵活、功能更加丰富。事实上,ProcessWindowFunction 是 Flink 底层 API——处理函数(process function)中的一员,关于处理函数我们会在后续章节展开讲解。


当 然 , 这 些 好 处 是 以 牺 牲 性 能 和 资 源 为 代 价 的 。 作 为 一 个 全 窗 口 函 数 ,ProcessWindowFunction 同样需要将所有数据缓存下来、等到窗口触发计算时才使用。它其实就是一个增强版的 WindowFunction。


具体使用跟 WindowFunction 非常类似,我们可以基于 WindowedStream 调用.process()方法,传入一个 ProcessWindowFunction 的实现类。下面是一个电商网站统计每小时 UV 的例子:

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
import java.time.Duration;
import java.util.HashSet;
public class UvCountByWindowExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ZERO)
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));
        // 将数据全部发往同一分区,按窗口统计 UV
        stream.keyBy(data -> true)
                .window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .process(new UvCountByWindow())
                .print();
        env.execute();
    }
    // 自定义窗口处理函数
    public static class UvCountByWindow extends ProcessWindowFunction<Event, String, Boolean, TimeWindow> {
        @Override
        public void process(Boolean aBoolean, Context context, Iterable<Event> elements, Collector<String> out) throws Exception {
            HashSet<String> userSet = new HashSet<>();
            // 遍历所有数据,放到 Set 里去重
            for (Event event : elements) {
                userSet.add(event.user);
            }
            // 结合窗口信息,包装输出内容
            Long start = context.window().getStart();
            Long end = context.window().getEnd();
            out.collect(" 窗 口 : " + new Timestamp(start) + " ~ " + new Timestamp(end) + " 的独立访客数量是:" + userSet.size());
        }
    }
}

这里我们使用的是事件时间语义。定义 10 秒钟的滚动事件窗口后,直接使用ProcessWindowFunction 来定义处理的逻辑。我们可以创建一个 HashSet,将窗口所有数据的userId 写入实现去重,最终得到 HashSet 的元素个数就是 UV 值。


当然,这里我们并没有用到下文中其他信息 , 所以其实没有必要使用ProcessWindowFunction。全窗口函数因为运行效率较低,很少直接单独使用,往往会和增量聚合函数结合在一起,共同实现窗口的处理计算。


增量聚合和全窗口函数的结合使用

我们已经了解了 Window API 中两类窗口函数的用法,下面我们先来做个简单的总结。


增量聚合函数处理计算会更高效。举一个最简单的例子,对一组数据求和。大量的数据连续不断到来,全窗口函数只是把它们收集缓存起来,并没有处理;到了窗口要关闭、输出结果的时候,再遍历所有数据依次叠加,得到最终结果。而如果我们采用增量聚合的方式,那么只需要保存一个当前和的状态,每个数据到来时就会做一次加法,更新状态;到了要输出结果的时候,只要将当前状态直接拿出来就可以了。增量聚合相当于把计算量“均摊”到了窗口收集数据的过程中,自然就会比全窗口聚合更加高效、输出更加实时。


而全窗口函数的优势在于提供了更多的信息,可以认为是更加“通用”的窗口操作。它只负责收集数据、提供上下文相关信息,把所有的原材料都准备好,至于拿来做什么我们完全可以任意发挥。这就使得窗口计算更加灵活,功能更加强大。


所以在实际应用中,我们往往希望兼具这两者的优点,把它们结合在一起使用。Flink 的Window API 就给我们实现了这样的用法。、、


我们之前在调用 WindowedStream 的.reduce()和.aggregate()方法时,只是简单地直接传入了一个 ReduceFunction 或 AggregateFunction 进行增量聚合。除此之外,其实还可以传入第二个参数:一个全窗口函数,可以是 WindowFunction 或者 ProcessWindowFunction。

// ReduceFunction 与 WindowFunction 结合
public <R> SingleOutputStreamOperator<R> reduce(ReduceFunction<T> reduceFunction, WindowFunction<T, R, K, W> function) 
// ReduceFunction 与 ProcessWindowFunction 结合
public <R> SingleOutputStreamOperator<R> reduce(ReduceFunction<T> reduceFunction, ProcessWindowFunction<T, R, K, W> 
function)
// AggregateFunction 与 WindowFunction 结合
public <ACC, V, R> SingleOutputStreamOperator<R> aggregate(AggregateFunction<T, ACC, V> aggFunction, WindowFunction<V, R, K, W> windowFunction)
// AggregateFunction 与 ProcessWindowFunction 结合
public <ACC, V, R> SingleOutputStreamOperator<R> aggregate(AggregateFunction<T, ACC, V> aggFunction,ProcessWindowFunction<V, R, K, W> windowFunction)

这样调用的处理机制是:基于第一个参数(增量聚合函数)来处理窗口数据,每来一个数据就做一次聚合;等到窗口需要触发计算时,则调用第二个参数(全窗口函数)的处理逻辑输出结果。需要注意的是,这里的全窗口函数就不再缓存所有数据了,而是直接将增量聚合函数的结果拿来当作了 Iterable 类型的输入。一般情况下,这时的可迭代集合中就只有一个元素了。


下面我们举一个具体的实例来说明。在网站的各种统计指标中,一个很重要的统计指标就是热门的链接;想要得到热门的 url,前提是得到每个链接的“热门度”。一般情况下,可以用url 的浏览量(点击量)表示热门度。我们这里统计 10 秒钟的 url 浏览量,每 5 秒钟更新一次;另外为了更加清晰地展示,还应该把窗口的起始结束时间一起输出。我们可以定义滑动窗口,并结合增量聚合函数和全窗口函数来得到统计结果。

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
public class UrlViewCountExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));
        // 需要按照 url 分组,开滑动窗口统计
        stream.keyBy(data -> data.url)
                .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
                // 同时传入增量聚合函数和全窗口函数
                .aggregate(new UrlViewCountAgg(), new UrlViewCountResult())
                .print();
        env.execute();
    }
    // 自定义增量聚合函数,来一条数据就加一
    public static class UrlViewCountAgg implements AggregateFunction<Event, Long, Long> {
        @Override
        public Long createAccumulator() {
            return 0L;
        }
        @Override
        public Long add(Event value, Long accumulator) {
            return accumulator + 1;
        }
        @Override
        public Long getResult(Long accumulator) {
            return accumulator;
        }
        @Override
        public Long merge(Long a, Long b) {
            return null;
        }
    }
    // 自定义窗口处理函数,只需要包装窗口信息
    public static class UrlViewCountResult extends ProcessWindowFunction<Long, UrlViewCount, String, TimeWindow> {
        @Override
        public void process(String url, Context context, Iterable<Long> elements, Collector<UrlViewCount> out) throws Exception {
            // 结合窗口信息,包装输出内容
            Long start = context.window().getStart();
            Long end = context.window().getEnd();
            // 迭代器中只有一个元素,就是增量聚合函数的计算结果
            out.collect(new UrlViewCount(url, elements.iterator().next(), start, end));
        }
    }
}
import java.sql.Timestamp;
public class UrlViewCount {
    public String url;
    public Long count;
    public Long windowStart;
    public Long windowEnd;
    public UrlViewCount() {
    }
    public UrlViewCount(String url, Long count, Long windowStart, Long windowEnd) {
        this.url = url;
        this.count = count;
        this.windowStart = windowStart;
        this.windowEnd = windowEnd;
    }
    @Override
    public String toString() {
        return "UrlViewCount{" +
                "url='" + url + '\'' +
                ", count=" + count +
                ", windowStart=" + new Timestamp(windowStart) +
                ", windowEnd=" + new Timestamp(windowEnd) +
                '}';
    }
}

代码中用一个 AggregateFunction 来实现增量聚合,每来一个数据就计数加一;得到的结果交给 ProcessWindowFunction,结合窗口信息包装成我们想要的 UrlViewCount,最终输出统计结果。


注:ProcessWindowFunction 是处理函数中的一种,后面我们会详细讲解。这里只用它来将增量聚合函数的输出结果包裹一层窗口信息。


窗口处理的主体还是增量聚合,而引入全窗口函数又可以获取到更多的信息包装输出,这样的结合兼具了两种窗口函数的优势,在保证处理性能和实时性的同时支持了更加丰富的应用场景。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
110 0
|
2月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
113 0
|
6天前
|
数据处理 数据安全/隐私保护 流计算
Flink 三种时间窗口、窗口处理函数使用及案例
Flink 是处理无界数据流的强大工具,提供了丰富的窗口机制。本文介绍了三种时间窗口(滚动窗口、滑动窗口和会话窗口)及其使用方法,包括时间窗口的概念、窗口处理函数的使用和实际案例。通过这些机制,可以灵活地对数据流进行分析和计算,满足不同的业务需求。
65 27
|
4月前
|
SQL 存储 Unix
Flink SQL 在快手实践问题之设置 Window Offset 以调整窗口划分如何解决
Flink SQL 在快手实践问题之设置 Window Offset 以调整窗口划分如何解决
72 2
|
2月前
|
分布式计算 Java 大数据
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
44 0
|
2月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
40 0
|
2月前
|
消息中间件 NoSQL Java
Flink-06 Flink Java 3分钟上手 滚动窗口 时间驱动 Kafka TumblingWindow TimeWindowFunction TumblingProcessing
Flink-06 Flink Java 3分钟上手 滚动窗口 时间驱动 Kafka TumblingWindow TimeWindowFunction TumblingProcessing
50 0
|
4月前
|
SQL 流计算
Flink SQL 在快手实践问题之CUMULATE窗口的划分逻辑如何解决
Flink SQL 在快手实践问题之CUMULATE窗口的划分逻辑如何解决
102 2
|
4月前
|
SQL 安全 流计算
Flink SQL 在快手实践问题之Group Window Aggregate 中的数据倾斜问题如何解决
Flink SQL 在快手实践问题之Group Window Aggregate 中的数据倾斜问题如何解决
94 1
|
4月前
|
SQL 流计算
Flink SQL 在快手实践问题之使用Dynamic Cumulate Window绘制直播间累计UV曲线如何解决
Flink SQL 在快手实践问题之使用Dynamic Cumulate Window绘制直播间累计UV曲线如何解决
77 1