Flink安装部署{单机模式、会话模式(集群部署)、yarn模式(包含hadoop3.1.3部署)}

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink安装部署{单机模式、会话模式(集群部署)、yarn模式(包含hadoop3.1.3部署)}

flink部署

前置准备

1.CentOS7.5

2.java8

3.配置三台机器时间同步和免密登陆,关闭防火墙

ip地址 主机名

192.168.10.128 master
192.168.10.129 slave1
192.168.10.130 Slave2

下载链接:https://flink.apache.org/zh/downloads.html#section-7

这里我选择的是1.13.0:https://archive.apache.org/dist/flink/flink-1.13.0/

组件:

Flink中有几个关键性组件:客户端、调度中心(JobManager)、任务管理器(TaskManager)


我们通过客户端解析任务、然后提交到调度中心,调度中心分配任务到不同的工作节点运行。

单机模式

上传flink-1.13.0-bin-scala_2.12.tgz到/opt/software

解压(没有目录的话自行创建)

tar -zxvf flink-1.13.0-bin-scala_2.12.tgz -C /opt/module/
cd /opt/module/
mv flink-1.13.0 flink

启动

cd /opt/module/flink/bin
./start-cluster.sh

通过jps查看进程,包含StandaloneSessionClusterEntrypoint和TaskManagerRunner代表成功

10369 StandaloneSessionClusterEntrypoint
10680 TaskManagerRunner

flink提供了一个web页面,访问master:8081即可看到(要hosts文件配置了master对应的ip地址)

关闭集群

cd /opt/module/flink/bin
./stop-cluster.sh

会话模式(集群部署)

上传flink-1.13.0-bin-scala_2.12.tgz到/opt/software

master上解压(没有目录的话自行创建)

tar -zxvf flink-1.13.0-bin-scala_2.12.tgz -C /opt/module/
cd /opt/module/
mv flink-1.13.0 flink

修改配置,设置jobmanager

cd /opt/module/flink/conf
vim flink-conf.yaml

设置TaskManager 节点

vim workers

修改为

slave1
slave2

分发到slave1、slave2

scp -r /opt/module/flink/ root@slave1:/opt/module
scp -r /opt/module/flink/ root@slave2:/opt/module

只要在master启动

cd /opt/module/flink/bin
./start-cluster.sh

flink提供了一个web页面,访问master:8081即可看到(要hosts文件配置了master对应的ip地址)

yarn模式(推荐)

首先要确保有hadoop集群

master slave1 slave2
HDFS NameNode DataNode DataNode SecondaryNameNode DataNode
YARN NodeManager ResourceManager NodeManager NodeManager

下载地址:https://archive.apache.org/dist/hadoop/common/hadoop-3.1.3/


选择hadoop-3.1.3.tar.gz下载


上传至master节点


首先进行解压,然后分发到slave1和slave2,分别登陆到slave1,和slave2完成解压

tar -zxvf hadoop-3.1.3.tar.gz -C /opt/module/
scp hadoop-3.1.3.tar.gz root@slave1:/opt/software
scp hadoop-3.1.3.tar.gz root@slave2:/opt/software

配置环境变量

vim /root/.bash_profile
HADOOP_HOME=/opt/module/hadoop-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`

重开shell窗口,查看hadoop版本

hadoop version

核心配置文件

cd /opt/module/hadoop-3.1.3/etc/hadoop/
vim core-site.xml
<!-- namenode地址端口-->
<property>
    <name>fs.defaultFS</name>
    <value>hdfs://master:8020</value>
</property>
<!-- 数据存储目录-->
<property>
    <name>hadoop.data.dir</name>
    <value>/opt/module/hadoop-3.1.3/data</value>
</property>
<property>
    <name>hadoop.proxyuser.root.hosts</name>
    <value>*</value>
</property>
<property>
    <name>hadoop.proxyuser.root.groups</name>
    <value>*</value>
</property>

HDFS配置文件

vim hdfs-site.xml
<!-- nn web端访问地址-->
<property>
  <name>dfs.namenode.http-address</name>
  <value>master:9870</value>
</property>
<property>
  <name>dfs.namenode.name.dir</name>
  <value>file://${hadoop.data.dir}/name</value>
</property>
<property>
  <name>dfs.datanode.data.dir</name>
  <value>file://${hadoop.data.dir}/data</value>
</property>
<!--主节点的元数据备份地址-->
<property>
  <name>dfs.namenode.checkpoint.dir</name>
  <value>file://${hadoop.data.dir}/namesecondary</value>
</property>
  <property>
  <name>dfs.client.datanode-restart.timeout</name>
  <value>30</value>
</property>
<property>
  <name>dfs.namenode.secondary.http-address</name>
  <value>slave2:9868</value>
</property>

YARN配置文件

vim yarn-site.xml
<!-- 指定MR走shuffle -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
  <!-- 指定ResourceManager的地址-->
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>slave1</value>
    </property>
  <!-- 环境变量的继承 -->
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>
  <!-- yarn容器允许分配的最大最小内存 -->
    <property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>512</value>
    </property>
    <property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>4096</value>
    </property>
    <!-- yarn容器允许管理的物理内存大小 -->
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>4096</value>
    </property>
    <!-- 关闭yarn对虚拟内存的限制检查 -->
    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>

修改mapred-site.xml

vim mapred-site.xml
  <!-- 指定MapReduce程序运行在Yarn上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>

配置hadoop. jdk环境,不知道jdk在哪的可以echo $JAVA_HOME查看

vim /opt/module/hadoop-3.1.3/etc/hadoop/hadoop-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_212

配置workers(不要有多余的空格)

vim /opt/module/hadoop-3.1.3/etc/hadoop/workers
master
slave1
slave2

在启动之前需要修改一下启动文件,修改start-dfs.sh和stop-dfs.sh,在文件最开始加入下面四行

vim /opt/module/hadoop-3.1.3/sbin/start-dfs.sh
vim /opt/module/hadoop-3.1.3/sbin/stop-dfs.sh
HDFS_DATANODE_USER=root 
HADOOP_SECURE_DN_USER=hdfs 
HDFS_NAMENODE_USER=root 
HDFS_SECONDARYNAMENODE_USER=root 

修改start-dfs.sh和stop-dfs.sh,在文件最开始加入下面四行

vim /opt/module/hadoop-3.1.3/sbin/start-yarn.sh
vim /opt/module/hadoop-3.1.3/sbin/stop-yarn.sh
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root

同步sbin目录(启动命令),和etc/hadoop/目录下(配置文件),如果复制有问题自己手打

cd /opt/module/hadoop-3.1.3/etc/
scp -r hadoop/ root@slave1:/opt/module/hadoop-3.1.3/etc/ 
scp -r hadoop/ root@slave2:/opt/module/hadoop-3.1.3/etc/ 
cd /opt/module/hadoop-3.1.3 
scp -r sbin/ root@slave1:/opt/module/hadoop-3.1.3/ 
scp -r sbin/ root@slave2:/opt/module/hadoop-3.1.3/ 

如果集群是第一次启动,需要在master节点格式化NameNode

cd /opt/module/hadoop-3.1.3/
bin/hdfs namenode -format


在master上执行

cd /opt/module/hadoop-3.1.3/
sbin/start-dfs.sh

在slave1上执行

cd /opt/module/hadoop-3.1.3/
sbin/start-yarn.sh

部署flink

解压flink,修改文件夹为flink-1.13.0-yarn

tar -zxvf flink-1.13.0-bin-scala_2.12.tgz -C /opt/module/
cd /opt/module
mv flink-1.13.0 flink-1.13.0-yarn

修改配置

vim flink-conf.yaml
jobmanager.memory.process.size: 1600m
taskmanager.memory.process.size: 1728m
taskmanager.numberOfTaskSlots: 8
parallelism.default: 1

启动,首先要保证hadoop集群启动成功

cd /opt/module/flink-1.13.0-yarn
bin/yarn-session.sh -nm test

可以访问地址,看到客户端

最后说一句,尚硅谷yyds

https://www.bilibili.com/video/BV133411s7Sa?p=24&spm_id_from=pageDriver

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
28天前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
261 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
3月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
525 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
8月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
226 0
|
8月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
235 0
|
资源调度 Java 大数据
听说你熟悉Flink-On-Yarn的部署模式?
5万人关注的大数据成神之路,不来了解一下吗?5万人关注的大数据成神之路,真的不来了解一下吗?5万人关注的大数据成神之路,确定真的不来了解一下吗? 欢迎您关注《大数据成神之路》 前言 Flink提供了两种在yarn上运行的模式,分别为Session-Cluster和Per-Job-Cluster模式,本文分析两种模式及启动流程。
1547 0
|
9月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
7月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
2656 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
7月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
318 56
|
5月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
382 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
6月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。

热门文章

最新文章

下一篇
oss创建bucket