Baumer工业相机堡盟工业相机如何联合BGAPISDK和OpenCVSharp实现图像的伽马变换算法增强(C#)

简介: Baumer工业相机堡盟工业相机如何联合BGAPISDK和OpenCVSharp实现图像的伽马变换算法增强(C#)

Baumer工业相机

Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。


Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。

Baumer工业相机由于其性能和质量的优越和稳定,常用于高速同步采集领域,通常使用各种图像算法来提高其捕获的图像的质量。


Baumer工业相机使用图像算法增加图像的技术背景

工业相机通常使用各种图像算法来提高其捕获的图像的质量。这些算法旨在提高图像的清晰度、对比度、色彩准确性和整体图像质量。


最常用的算法之一是降噪算法。该算法用于消除图像中可能出现的任何随机噪声或颗粒。另一个流行的算法是图像稳定算法。该算法用于减少由相机抖动引起的模糊现象。


另一个用于工业相机的流行图像算法是边缘增强算法。该算法用于提高图像中边缘的清晰度。它通过检测图像中的边缘,然后增加这些边缘的对比度来工作。


直方图均衡化是另一种用于工业相机的图像算法。该算法通过重新分配像素值以覆盖图像中的整个可用值范围来改善图像的对比度。


总的来说,这些图像算法帮助工业相机捕获清晰和高质量的图像。它们在现代成像系统中起着至关重要的作用,在机器人、显微镜和医学成像等领域至关重要。


本文这里只简单使用Baumer工业相机进行伽马增强的图像算法。


Baumer工业相机通过BGAPI SDK联合OpenCV使用图像增强算法

下面介绍在C#里Baumer工业相机在回调函数里直接进行图像增强的演示


伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于于相机过曝)情况下的图像增强效果明显。


1.引用合适的类文件

代码如下(示例):

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using BGAPI2;
using System.Runtime.InteropServices;
using System.IO;
using CSCameraDemo.Properties;
using System.Globalization;
using WindowsFormsApplication1;
using System.Threading.Tasks;
using System.Threading;
using System.Drawing.Imaging;
using OpenCvSharp;
using OpenCvSharp.Dnn;

2.BGAPI SDK在图像回调中引用OpenCV的伽马变换增强算法

代码如下(示例),C#调用代码如下所示:

void mDataStream_NewBufferEvent(object sender, BGAPI2.Events.NewBufferEventArgs mDSEvent)
{
    try
    {
        BGAPI2.Buffer mBufferFilled = null;              
        mBufferFilled = mDSEvent.BufferObj;
        if (mBufferFilled == null)
        {
            MessageBox.Show("Error: Buffer Timeout after 1000 ms!");
        }
        else if (mBufferFilled.IsIncomplete == true)
        {
            //MessageBox.Show("Error: Image is incomplete!");
            //queue buffer again
            mBufferFilled.QueueBuffer();
        }
        else
        {
            #region//获取当前FrameID
            FrameIDInt = (int)mBufferFilled.FrameID;
            OnNotifySetFrameID(FrameIDInt.ToString());
            #endregion
            //将相机内部图像内存数据转为bitmap数据
            System.Drawing.Bitmap bitmap  = new System.Drawing.Bitmap((int)mBufferFilled.Width, (int)mBufferFilled.Height, (int)mBufferFilled.Width,
                System.Drawing.Imaging.PixelFormat.Format8bppIndexed, (IntPtr)((ulong)mBufferFilled.MemPtr + mBufferFilled.ImageOffset));
            #region//Mono图像数据转换。彩色图像数据转换于此不同
            System.Drawing.Imaging.ColorPalette palette = bitmap.Palette;
            int nColors = 256;
            for (int ix = 0; ix < nColors; ix++)
            {
                uint Alpha = 0xFF;
                uint Intensity = (uint)(ix * 0xFF / (nColors - 1));
                palette.Entries[ix] = System.Drawing.Color.FromArgb((int)Alpha, (int)Intensity, (int)Intensity, (int)Intensity);
            }
            bitmap.Palette = palette;
            #endregion
            #region//回调函数保存图像功能
            if (bSaveImg)
            {
                //使用bitmap自带函数保存
                string strtime = DateTime.Now.ToString("yyyyMMddhhmmssfff");
                string saveimagepath = pImgFileDir  +"\\"+ strtime + ".jpg";
                bitmap.Save(saveimagepath, System.Drawing.Imaging.ImageFormat.Bmp);
                //使用opencv进行保存图像
                if (mBufferFilled.PixelFormat == "Mono8")
                {
                    OpenCvSharp.Mat matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                           
                    matgray.SaveImage("opencv_image.png");
                    Cv2.ImWrite("opencvcv_image_Clone.png", matgray);
                }                      
                bSaveImg = false;//变量控制单次保存图像
            }
            #endregion
            #region//对灰度图像进行伽马变换算法增强
            OpenCvSharp.Mat Matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                 
    //方法一
    // Define gamma value
            double gamma = 1.5;
            // Apply gamma transform algorithm
            Mat gammaImage = new Mat();
            Cv2.Pow(Matgray , gamma, gammaImage);
            // Convert image back to 8-bit format
            Mat gammaImage8Bit = new Mat();
            Cv2.ConvertScaleAbs(gammaImage, Qualized);
    //方法二                                
    // Define the gamma value
    double gamma = 0.5;
    // Apply the gamma transform algorithm to the image
    Mat gammaTransformedImage = new Mat(Matgray.Rows, Matgray.Cols, MatType.CV_8UC1);
    for (int i = 0; i < Matgray.Rows; i++)
    {
        for (int j = 0; j < Matgray.Cols; j++)
        {
            byte pixelValue = Matgray.At<byte>(i, j);
            byte gammaTransformedPixelValue = (byte)(255 * Math.Pow((pixelValue / 255.0), gamma));
            gammaTransformedImage.Set<byte>(i, j, gammaTransformedPixelValue);
        }
    }
    // Show the original and transformed images side by side
    Mat concatImages = new Mat();
    Cv2.HConcat(Matgray, gammaTransformedImage, Qualized);
            Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Qualized);//用mat转换为bitmap
            #endregion
            #region//bitmap的图像数据复制pBitmap
            Bitmap clonebitmap = (Bitmap)bmp.Clone();
            BitmapData data = clonebitmap.LockBits(new Rectangle(0, 0, clonebitmap.Width, clonebitmap.Height), ImageLockMode.ReadOnly, clonebitmap.PixelFormat);
            clonebitmap.UnlockBits(data);
            pBitmap = clonebitmap;
            #endregion
            #region//将pBitmap图像数据显示在UI界面PictureBox控件上
            prcSource.X = 0;prcSource.Y = 0;
            prcSource.Width = (int)mBufferFilled.Width;prcSource.Height = (int)mBufferFilled.Height;
            System.Drawing.Graphics graph = System.Drawing.Graphics.FromHwnd(pictureBoxA.Handle);
            graph.DrawImage(pBitmap, prcPBox, prcSource, GraphicsUnit.Pixel);
            #endregion
            clonebitmap.Dispose(); //清除临时变量clonebitmap所占内存空间
            mBufferFilled.QueueBuffer();
        }
    }
    catch (BGAPI2.Exceptions.IException ex)
    {
        {
            string str2;
            str2 = string.Format("ExceptionType:{0}! ErrorDescription:{1} in function:{2}", ex.GetType(), ex.GetErrorDescription(), ex.GetFunctionName());
            MessageBox.Show(str2);
        }
    }
    return;
}

3.OpenCV进行伽马变换算法进行图像增强

伽马变换主要用于图像的校正,将灰度过高或者灰度过低的图片进行修正,增强对比度。变换公式就是对原图像上每一个像素值做乘积运算:


方法一C#调用代码如下所示:

#region//对灰度图像进行伽马变换算法增强
 OpenCvSharp.Mat Matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                 
//方法一
// Define gamma value
double gamma = 1.5;
// Apply gamma transform algorithm
Mat gammaImage = new Mat();
Cv2.Pow(Matgray , gamma, gammaImage);
// Convert image back to 8-bit format
Mat gammaImage8Bit = new Mat();
Cv2.ConvertScaleAbs(gammaImage, Qualized);
Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Qualized);//用mat转换为bitmap
#endregion

方法二C#调用代码如下所示:

#region//对灰度图像进行伽马变换算法增强
OpenCvSharp.Mat Matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                 
// Define the gamma value
double gamma = 0.5;
// Apply the gamma transform algorithm to the image
Mat gammaTransformedImage = new Mat(Matgray.Rows, Matgray.Cols, MatType.CV_8UC1);
for (int i = 0; i < Matgray.Rows; i++)
{
    for (int j = 0; j < Matgray.Cols; j++)
    {
        byte pixelValue = Matgray.At<byte>(i, j);
        byte gammaTransformedPixelValue = (byte)(255 * Math.Pow((pixelValue / 255.0), gamma));
        gammaTransformedImage.Set<byte>(i, j, gammaTransformedPixelValue);
    }
}
// Show the original and transformed images side by side
Mat concatImages = new Mat();
Cv2.HConcat(Matgray, gammaTransformedImage, Qualized);
Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Qualized);//用mat转换为bitmap
#endregion

呈现效果如下所示:

(未使用伽马变换增强图像算法)


2.png

(使用伽马变换增强图像算法)


1.png


Baumer工业相机使用图像算法增强图像的优势

提高图像质量: 随着图像算法的使用,工业相机可以产生高度详细和清晰的图像。这些算法可以减少噪音,突出边缘,并增加对比度,以产生更好的图像质量。


增加准确性:图像算法也可以提供高度准确的测量和数据。通过使用边缘检测和模式识别等图像分析技术,工业相机可以更精确地识别和测量物体。


成本效益: 通过提高图像质量和准确性,工业相机可以减少对人工检查的需求,从而降低与质量控制和产品拒绝相关的成本。


效率提高: 通过使图像分析过程自动化,工业相机可以提高产量,减少周期时间,使生产线更有效率。


更好的决策: 随着图像质量和准确性的提高,工业相机可以为决策者提供高度详细和可靠的数据,使他们能够对生产过程和质量控制做出更明智的决定。


Baumer工业相机使用图像算法增强图像的行业应用

带有图像算法的工业相机被广泛应用于各个行业,用于增强图像,以提高产品质量、安全和效率。以下是其应用的一些例子:


制造业: 具有图像算法的工业相机用于检查装配线的缺陷,检查产品的质量,并确保遵守安全标准。它们还可用于在制造过程中检查零件,这有助于及早发现缺陷,防止昂贵的生产延误。


汽车行业: 在汽车行业,具有图像算法的工业相机被广泛用于安全检查,检测汽车零部件的缺陷,并确保司机和乘客的安全。它们还可用于事故发生后的损害评估。


航空航天: 工业相机在航空航天工业中用于检查卫星、火箭和其他航天器在组装期间和组装后的部件。图像算法可以帮助检测关键部件的缺陷和故障,以确保宇航员的安全和太空任务的成功。


医疗:具有图像算法的工业相机被用于检测和诊断疾病和医疗状况的医疗应用。它们还被用于医学研究、分析和监测病人的健康。


农业: 工业相机可用于监测作物的生长,检查农产品的质量,并检测作物的病虫害。图像算法可以帮助早期发现问题,使农民能够采取纠正措施来保护他们的作物。


在所有这些行业中,使用带有图像算法的工业相机大大改善了图像分析的效率和准确性,从而提高了产品质量,增加了安全性,并降低了成本。

目录
相关文章
|
3月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
312 27
|
数据采集 JavaScript C#
C#图像爬虫实战:从Walmart网站下载图片
C#图像爬虫实战:从Walmart网站下载图片
|
并行计算 算法 C#
C# Mandelbrot和Julia分形图像生成程序更新到2010-9-14版 支持多线程计算 多核处理器
此文档是一个关于分形图像生成器的介绍,作者分享了个人开发的M-J算法集成及色彩创新,包括源代码和历史版本。作者欢迎有兴趣的读者留言交流,并提供了邮箱(delacroix_xu@sina.com)以分享资源。文中还展示了程序的发展历程,如增加了真彩色效果、圈选放大、历史记录等功能,并分享了几幅精美的分形图像。此外,还提到了程序的新特性,如导入ini文件批量输出图像和更新一批图片的功能。文档末尾附有多张程序生成的高分辨率分形图像示例。
|
存储 编解码 算法
C#.NET逃逸时间算法生成分形图像的毕业设计完成!晒晒功能
该文介绍了一个使用C#.NET Visual Studio 2008开发的程序,包含错误修复的Julia、Mandelbrot和优化过的Newton三种算法,生成色彩丰富的分形图像。作者改进了原始算法的效率,将内层循环的画点操作移至外部,提升性能。程序提供五种图形模式,支持放大缩小及颜色更新,并允许用户自定义画布大小以调整精度。还具备保存为高质JPG的功能。附有四张示例图片展示生成的分形效果。
|
存储 传感器 监控
工业相机如何实现实时和本地Raw格式图像和Bitmap格式图像的保存和相互转换(C#代码,UI界面版)
工业相机如何实现实时和本地Raw格式图像和Bitmap格式图像的保存和相互转换(C#代码,UI界面版)
660 0
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
11天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
10天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
91 14
|
9天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)

热门文章

最新文章