Baumer工业相机堡盟工业相机如何联合BGAPISDK和OpenCVSharp实现图像的拉普拉斯算法增强(C#)

简介: Baumer工业相机堡盟工业相机如何联合BGAPISDK和OpenCVSharp实现图像的拉普拉斯算法增强(C#)

Baumer工业相机

Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。


Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。

Baumer工业相机由于其性能和质量的优越和稳定,常用于高速同步采集领域,通常使用各种图像算法来提高其捕获的图像的质量。


Baumer工业相机使用图像算法增加图像的技术背景

工业相机通常使用各种图像算法来提高其捕获的图像的质量。这些算法旨在提高图像的清晰度、对比度、色彩准确性和整体图像质量。


最常用的算法之一是降噪算法。该算法用于消除图像中可能出现的任何随机噪声或颗粒。另一个流行的算法是图像稳定算法。该算法用于减少由相机抖动引起的模糊现象。


另一个用于工业相机的流行图像算法是边缘增强算法。该算法用于提高图像中边缘的清晰度。它通过检测图像中的边缘,然后增加这些边缘的对比度来工作。


直方图均衡化是另一种用于工业相机的图像算法。该算法通过重新分配像素值以覆盖图像中的整个可用值范围来改善图像的对比度。


总的来说,这些图像算法帮助工业相机捕获清晰和高质量的图像。它们在现代成像系统中起着至关重要的作用,在机器人、显微镜和医学成像等领域至关重要。


本文这里只简单使用Baumer工业相机进行拉普拉斯的图像算法。


Baumer工业相机通过BGAPI SDK联合OpenCV使用图像增强算法

下面介绍在C#里Baumer工业相机在回调函数里直接进行图像增强的演示


1.引用合适的类文件

代码如下(示例):

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using BGAPI2;
using System.Runtime.InteropServices;
using System.IO;
using CSCameraDemo.Properties;
using System.Globalization;
using WindowsFormsApplication1;
using System.Threading.Tasks;
using System.Threading;
using System.Drawing.Imaging;
using OpenCvSharp;
using OpenCvSharp.Dnn;

2.BGAPI SDK在图像回调中引用OpenCV的拉普拉斯算法

代码如下(示例),C#调用代码如下所示:

void mDataStream_NewBufferEvent(object sender, BGAPI2.Events.NewBufferEventArgs mDSEvent)
{
    try
    {
        BGAPI2.Buffer mBufferFilled = null;              
        mBufferFilled = mDSEvent.BufferObj;
        if (mBufferFilled == null)
        {
            MessageBox.Show("Error: Buffer Timeout after 1000 ms!");
        }
        else if (mBufferFilled.IsIncomplete == true)
        {
            //MessageBox.Show("Error: Image is incomplete!");
            //queue buffer again
            mBufferFilled.QueueBuffer();
        }
        else
        {
            #region//获取当前FrameID
            FrameIDInt = (int)mBufferFilled.FrameID;
            OnNotifySetFrameID(FrameIDInt.ToString());
            #endregion
            //将相机内部图像内存数据转为bitmap数据
            System.Drawing.Bitmap bitmap  = new System.Drawing.Bitmap((int)mBufferFilled.Width, (int)mBufferFilled.Height, (int)mBufferFilled.Width,
                System.Drawing.Imaging.PixelFormat.Format8bppIndexed, (IntPtr)((ulong)mBufferFilled.MemPtr + mBufferFilled.ImageOffset));
            #region//Mono图像数据转换。彩色图像数据转换于此不同
            System.Drawing.Imaging.ColorPalette palette = bitmap.Palette;
            int nColors = 256;
            for (int ix = 0; ix < nColors; ix++)
            {
                uint Alpha = 0xFF;
                uint Intensity = (uint)(ix * 0xFF / (nColors - 1));
                palette.Entries[ix] = System.Drawing.Color.FromArgb((int)Alpha, (int)Intensity, (int)Intensity, (int)Intensity);
            }
            bitmap.Palette = palette;
            #endregion
            #region//回调函数保存图像功能
            if (bSaveImg)
            {
                //使用bitmap自带函数保存
                string strtime = DateTime.Now.ToString("yyyyMMddhhmmssfff");
                string saveimagepath = pImgFileDir  +"\\"+ strtime + ".jpg";
                bitmap.Save(saveimagepath, System.Drawing.Imaging.ImageFormat.Bmp);
                //使用opencv进行保存图像
                if (mBufferFilled.PixelFormat == "Mono8")
                {
                    OpenCvSharp.Mat matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                           
                    matgray.SaveImage("opencv_image.png");
                    Cv2.ImWrite("opencvcv_image_Clone.png", matgray);
                }                      
                bSaveImg = false;//变量控制单次保存图像
            }
            #endregion
            #region//对灰度图像进行拉普拉斯算法增强
            OpenCvSharp.Mat Matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                 
            using (var dst = new Mat())
            {
                 // Define the kernel filter
                 Mat kernel = new Mat(3, 3, MatType.CV_32F, new float[] { 1, 1, 1, 1, 1, 1, 1, 1, 1 });
                 // Apply the filter using filter2D function
                 Mat filtered = new Mat();
                 Cv2.Filter2D(Matgray, Qualized, -1, kernel);
            }
            Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Qualized);//用mat转换为bitmap
            #endregion
            #region//bitmap的图像数据复制pBitmap
            Bitmap clonebitmap = (Bitmap)bmp.Clone();
            BitmapData data = clonebitmap.LockBits(new Rectangle(0, 0, clonebitmap.Width, clonebitmap.Height), ImageLockMode.ReadOnly, clonebitmap.PixelFormat);
            clonebitmap.UnlockBits(data);
            pBitmap = clonebitmap;
            #endregion
            #region//将pBitmap图像数据显示在UI界面PictureBox控件上
            prcSource.X = 0;prcSource.Y = 0;
            prcSource.Width = (int)mBufferFilled.Width;prcSource.Height = (int)mBufferFilled.Height;
            System.Drawing.Graphics graph = System.Drawing.Graphics.FromHwnd(pictureBoxA.Handle);
            graph.DrawImage(pBitmap, prcPBox, prcSource, GraphicsUnit.Pixel);
            #endregion
            clonebitmap.Dispose(); //清除临时变量clonebitmap所占内存空间
            mBufferFilled.QueueBuffer();
        }
    }
    catch (BGAPI2.Exceptions.IException ex)
    {
        {
            string str2;
            str2 = string.Format("ExceptionType:{0}! ErrorDescription:{1} in function:{2}", ex.GetType(), ex.GetErrorDescription(), ex.GetFunctionName());
            MessageBox.Show(str2);
        }
    }
    return;
}

3.OpenCV拉普拉斯算法进行图像增强

cv2.Filter2D函数可以对图像进行卷积操作,可以用来实现图像增强、边缘检测等功能。


在OpenCV的C++接口里,filter2D函数的原型为:void filter2D(InputArray src, OutputArray dst, int ddepth, InputArray kernel, Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT )。


其中,src和dst分别代表输入和输出的图像,ddepth是输出图像的深度,kernel是卷积核,anchor是卷积核的锚点,delta是输出图像的偏置值,borderType是图像边框扩展的方法。在使用时,需要先定义一个卷积核,然后传入filter2D函数中即可。


C#调用代码如下所示:

#region//对灰度图像进行拉普拉斯算法增强
            OpenCvSharp.Mat Matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                 
            using (var dst = new Mat())
            {
                 // Define the kernel filter
                 Mat kernel = new Mat(3, 3, MatType.CV_32F, new float[] { 1, 1, 1, 1, 1, 1, 1, 1, 1 });
                 // Apply the filter using filter2D function
                 Mat filtered = new Mat();
                 Cv2.Filter2D(Matgray, Qualized, -1, kernel);
            }
            Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Qualized);//用mat转换为bitmap
            #endregion

呈现效果如下所示:

(未使用拉普拉斯图像算法)

23.png


(使用拉普拉斯图像算法)

12.png

Baumer工业相机使用图像算法增强图像的优势

提高图像质量: 随着图像算法的使用,工业相机可以产生高度详细和清晰的图像。这些算法可以减少噪音,突出边缘,并增加对比度,以产生更好的图像质量。


增加准确性:图像算法也可以提供高度准确的测量和数据。通过使用边缘检测和模式识别等图像分析技术,工业相机可以更精确地识别和测量物体。


成本效益: 通过提高图像质量和准确性,工业相机可以减少对人工检查的需求,从而降低与质量控制和产品拒绝相关的成本。


效率提高: 通过使图像分析过程自动化,工业相机可以提高产量,减少周期时间,使生产线更有效率。


更好的决策: 随着图像质量和准确性的提高,工业相机可以为决策者提供高度详细和可靠的数据,使他们能够对生产过程和质量控制做出更明智的决定。


Baumer工业相机使用图像算法增强图像的行业应用

带有图像算法的工业相机被广泛应用于各个行业,用于增强图像,以提高产品质量、安全和效率。以下是其应用的一些例子:


制造业: 具有图像算法的工业相机用于检查装配线的缺陷,检查产品的质量,并确保遵守安全标准。它们还可用于在制造过程中检查零件,这有助于及早发现缺陷,防止昂贵的生产延误。


汽车行业: 在汽车行业,具有图像算法的工业相机被广泛用于安全检查,检测汽车零部件的缺陷,并确保司机和乘客的安全。它们还可用于事故发生后的损害评估。


航空航天: 工业相机在航空航天工业中用于检查卫星、火箭和其他航天器在组装期间和组装后的部件。图像算法可以帮助检测关键部件的缺陷和故障,以确保宇航员的安全和太空任务的成功。


医疗:具有图像算法的工业相机被用于检测和诊断疾病和医疗状况的医疗应用。它们还被用于医学研究、分析和监测病人的健康。


农业: 工业相机可用于监测作物的生长,检查农产品的质量,并检测作物的病虫害。图像算法可以帮助早期发现问题,使农民能够采取纠正措施来保护他们的作物。


在所有这些行业中,使用带有图像算法的工业相机大大改善了图像分析的效率和准确性,从而提高了产品质量,增加了安全性,并降低了成本。

目录
相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
4月前
|
机器学习/深度学习 人工智能 算法
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
|
4月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
5月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
|
7月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
6月前
|
算法 前端开发 计算机视觉
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
66 0
|
6月前
|
自然语言处理 并行计算 算法
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
62 0