一般叫全部写完的概率比较少,但是重点考察你对它的理解和一些基本特点的实现。 二叉查找树,也称二叉搜索树、有序二叉树(英语:ordered binary tree)是指一棵空树或者具有下列性质的二叉树:
任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 任意节点的左、右子树也分别为二叉查找树; 没有键值相等的节点。二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为O(log n)。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、multiset、关联数组等。
在写的时候需要足够理解二叉搜素树的特点,需要先设定好每个节点的数据结构
class Node { constructor(data, left, right) { this.data = data; this.left = left; this.right = right; } }
树是有节点构成,由根节点逐渐延生到各个子节点,因此它具备基本的结构就是具备一个根节点,具备添加,查找和删除节点的方法.
class BinarySearchTree { constructor() { this.root = null; } insert(data) { let n = new Node(data, null, null); if (!this.root) { return this.root = n; } let currentNode = this.root; let parent = null; while (1) { parent = currentNode; if (data < currentNode.data) { currentNode = currentNode.left; if (currentNode === null) { parent.left = n; break; } } else { currentNode = currentNode.right; if (currentNode === null) { parent.right = n; break; } } } } remove(data) { this.root = this.removeNode(this.root, data) } removeNode(node, data) { if (node == null) { return null; } if (data == node.data) { // no children node if (node.left == null && node.right == null) { return null; } if (node.left == null) { return node.right; } if (node.right == null) { return node.left; } let getSmallest = function(node) { if (node.left === null && node.right == null) { return node; } if (node.left != null) { return node.left; } if (node.right !== null) { return getSmallest(node.right); } } let temNode = getSmallest(node.right); node.data = temNode.data; node.right = this.removeNode(temNode.right, temNode.data); return node; } else if (data < node.data) { node.left = this.removeNode(node.left, data); return node; } else { node.right = this.removeNode(node.right, data); return node; } } find(data) { var current = this.root; while (current != null) { if (data == current.data) { break; } if (data < current.data) { current = current.left; } else { current = current.right } } return current.data; } } module.exports = BinarySearchTree;